
Interactive System Productivity Facility (ISPF)

Software Configuration and Library
Manager (SCLM) Developer’s and Project
Manager’s Guide
OS/390 Version 2 Release 8.0

SC34-4750-00

IBM

Interactive System Productivity Facility (ISPF)

Software Configuration and Library
Manager (SCLM) Developer’s and Project
Manager’s Guide
OS/390 Version 2 Release 8.0

SC34-4750-00

IBM

Note
Before using this document, read the general information under “Notices” on page vii.

Fourth Edition (September 1999)

This edition applies to ISPF for Version 2 Release 8 of the licensed program OS/390 (program number 5647-A01)
and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, and you have
ISPF-specific comments, address your comments to:
International Business Machines Corporation
Attn: Information Development
Department T99 / Building 062
P.O. Box 12195
Research Triangle Park, NC 27709-2195

FAX (United States & Canada): 1+919+254-0206
FAX (Other Countries): Your International Access Code +1+919+254-0206

If you have OS/390 - specific comments, address them to:
International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+914+432-9405
FAX (Other Countries): Your International Access Code +1+914+432-9405

IBMLink (United States customers only): KGNVMC(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet: mhvrcfs@vnet.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
Title and order number of this book
Page number or topic related to your comment

The ISPF development team maintains a site on the World-Wide Web, as does the OS/390 development team. The
URLs for the sites are:
http://www.software.ibm.com/ad/ispf
http://www.ibm.com/s390/os390

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices vii
Programming Interface Information. viii
Trademarks viii

Preface xi
Who Should Use This Book xi
What Is in This Book xi

Summary of Changes xiii
ISPF Product Changes xiii
ISPF DM Component Changes xiii
ISPF PDF Component Changes xiv
ISPF SCLM Component Changes xv
ISPF Client/Server Component Changes xv
ISPF User Interface Considerations xvi
ISPF Migration Considerations xvi

ISPF Profiles xvi
Year 2000 Support for ISPF xvi

Migrating from Previous Versions of
SCLM xix
Year 2000 Support xix
FLMALLOC Processing for IOTYPE S xx
Load Module Accounting Records and SSI
Information. xx

What’s in the OS/390 V2R8.0 ISPF
library? xxi
OS/390 V2R8.0 ISPF xxi

Elements and Features in OS/390 . . .xxiii

The ISPF User Interfacexxvii
Some Terms You Should Know xxvii
How to Navigate in ISPF without Using Action
Barsxxviii
How to Navigate in ISPF Using the Action Bar
Interfacexxviii

Action Barsxxviii
Action Bar Choices xxxi
Point-and-Shoot Text Fields xxxii
Function Keysxxxiii
Selection Fieldsxxxiii

Command Nestingxxxiv

Part 1. Project Manager’s Guide . . 1

Chapter 1. Defining the Project
Environment 3
Overview of Project Manager Tasks. 3

Project Definition Data 3
Generating a Project Environment 4
Step 1: Determine the Project’s Hierarchy . . . 4

Step 2: Identify the Types of Data to Support 8
Step 3: Establish Authorization Codes 9
Step 4: Allocate the PROJDEFS Data Sets . . . 13
Step 5: Allocate the Project Partitioned Data
Sets 13
Step 6: Allocate and Create the Control Data
Sets 19
Step 7: Protect the Project Environment . . . 25
Step 8: Create the Project Definition. 26
Step 9: Assemble and Link the Project
Definition 49
Project Manager Scenario 50

Chapter 2. Additional Project Manager
Tasks 61
Splitting Project VSAM Data Sets 61
Backing Up and Recovering the Project
Environment 62
Synchronizing Accounting Data Sets 62
Maintaining Accounting Data Sets 63
Modifying the Delete Group Dialog Interface . . 63

Chapter 3. Converting Projects to
SCLM 65
Prerequisites for Existing Hierarchies 65
Create Alternate Project Definitions 65
Create Architecture Definitions for the Project 66
Register Existing PDS Members with SCLM . . . 66
Introducing Fixes to the Converted Hierarchy 67

Chapter 4. Language Definition
Considerations 69
Using Multiple Translators in a Language
Definition 70
Invoking User-Defined Parsers 74

Defining Information Tracked by SCLM . . . 74
Writing the Parser 75
Telling SCLM How to Invoke Your Parser . . 75

Processing Conditionally Saved Components . . 85
Example of Processing Conditionally Saved
Components 85
Setting Up the Project Definition. 86

Specifying the Locations of Included Members 87
Example 88

Dynamic Include Tracking 92
Input List Translators 93

Configuring the Input List Translators 93
Defining a New Language to SCLM 94

Using DDnames and DDname Substitution
Lists 94

Showing Users How to Write CC Architecture
Definitions 105

Convert Your JCL Decks to Architecture
Definitions 106

© Copyright IBM Corp. 1990, 1999 iii

||
||
||
||
||
||
||
||
||
||

Defining a Preprocessor to SCLM 107
Passing the Source to the Compiler 109

Converting JCL to SCLM Language Definitions 112
Before You Begin 112
Capabilities and Restrictions 113
Converting JCL Cards to SCLM Macro
Statements 114

Chapter 5. Using SCLM and
Information Manager 123
Required Environment 123
Description of User Program Interaction 123
Input Parameters 123

Option List Format 123
Operands 124

Program Flow 125
Program Response to Errors 126

Return Codes 126
Example 126
Pascal Source Data Sets 127

FLM00CCV Pascal Source Files 127
Compilation Instructions for the Sample Program 127

Chapter 6. Understanding and Using
the Customizable Parsers 131
The Parsers as Shipped 131

Sample Language Definitions 131
Parser Error Listings 132

Modifying the Parsers 132
Adding More Elaborate Parsing Error Messages 133
Appending to the Error Listing File. 134

Compiling the Parsers 135

Part 2. Developer’s Guide137

Chapter 7. The Software Configuration
and Library Manager —SCLM 139
SCLM Project Environment 139

User Application Data 139

Chapter 8. Using SCLM Functions. . . 143
SCLM Main Menu 143
SCLM Main Menu Options 144

SCLM Main Menu Action Bar Choices: . . . 144
SCLM Main Menu Panel Fields: 144

View (Option 1) 145
SCLM View - Entry Panel Action Bar Choices 145

Edit (Option 2) 148
SCLM Edit - Entry Panel Fields 149
Comparison of SCLM and ISPF Editors . . . 150
SCLM Command Macros 151

Utilities (Option 3) 155
Library Utility 156
Ada Sublibrary Management Utility 174
Migration Utility 178
Database Contents Utility 180
Architecture Report Utility. 191
Export Utility 198
Import Utility 202

Audit and Version Utility 207
Delete Group Utility 213

Build (Option 4) 217
Build Report Example 221

Promote (Option 5) 224
Promote Report 227
Processing Errors 230

Command (Option 6) 231
Batch Processing 232
Output Disposition 232
Sample Project Utility (Option 7) 233

Chapter 9. Development Scenario . . . 235
Understanding the Hierarchy and the SCLM Main
Menu 235
Understanding the Architecture Definition . . . 236
Sample SCLM Development Cycle 238
Using the SCLM Editor 240
Understanding the Library Utility 241
Using Build. 242
Editing the Member to Correct Errors 243
Attempting to Promote a Member before
Performing a Build 243
Rebuilding the Changed Member 244
Using the Database Contents Utility 244
Promoting a Member Successfully 245
Drawing Down a Promoted Member 246
Performing Project Housekeeping Activities . . . 247

Chapter 10. Architecture Definition . . 249
Architecture Members 249

Kinds of Architecture Members 249
Defining Compiler Processed Components . . . 250

Compilation Control Architecture Members 250
Specifying Source Members 251

Defining Link Edit Processed Components . . . 251
SCLM Build and Control Timestamps 252

Defining Application and Subapplication
Components 253
Generic Architecture Members 254
Build and Promote by Change Code 254
Architecture Statements. 256

Statement Format 256
Statement Uses 257

Sample Application Using Architecture Definitions 264
Ensuring Synchronization with Architecture
Definitions 266
Build Outputs 268

Multiple Build Outputs 268
Sequential Build Outputs 268
Default Output Member Names 269
Languages of Output Members 269

Chapter 11. Managing Complex
Projects 271
Impact Assessment Techniques 271
Dependency Processing. 271
Propagating Applications to Other Databases . . 272

iv OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Part 3. CSP, DB2, and Workstation
Support275

Chapter 12. Cross System Product
Support 277
SCLM Support for CSP/370AD 4.1 277
Using SCLM with CSP/370AD 4.1, General
Information. 277

General Restrictions 281
Recommendations 283
Miscellaneous 284
Information For the Project Manager 287
Information For The Developer 309

Chapter 13. SCLM Support for DB2,
General Information 337
Restrictions 338
Information For The Project Manager 338

Generating a Project Environment 338
Information For The Developer 340

Developer Recommendations 340
Getting Started 341

Create DB2 CLIST 341
Examples of DB2 CLIST Members 343

Chapter 14. SCLM Support for
Workstation Builds 349
Requirements 349
Overview of Workstation Build 349
Information For The Project Manager 351

Project Setup Considerations 351
Information For The Developer 354

Migrating Applications into SCLM 354
Architecture Definition Members for
Workstation Applications 355
Specifying Options 357
Including Outputs From Other Build Steps 358
Running Multiple Workstation Commands 358

Sample Language Definition 359
Workstation Setup 363

Directories and File Names 363
Multiple Builds on One Workstation 364

Part 4. Appendixes365

Appendix. SCLM Variables and
MetaVariables 367
SCLM Variable and Metavariable Descriptions 367
SCLM Variable and Metavariable Tables 368

SCLM Variable Descriptions, Variable Names,
and Their SCLM Functions 369
SCLM Variables and Their SCLM Functions 374
SCLM Metavariable Descriptions, Metavariable
Names, and Their SCLM Functions 379
SCLM Metavariable Contents 380

Description of Group Variables 382

Glossary of SCLM Terms 385

Index 389

Readers’ Comments — We’d Like to
Hear from You 399

Contents v

vi OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non_IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504–1785, USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact the IBM Corporation, Mail
Station P300, 522 South Road, Poughkeepsie, NY 12601–5400, USA. Such
information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries in writing to

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1990, 1999 vii

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear. For users of BookManager Library Reader for
Windows, Version 2.0.2 at 5799–pxy Service Level : S9903ENU provides the best
results.

Programming Interface Information

This book documents information that is not intended to be used as programming
interfaces of ISPF.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries:

ACF/VTAM
AD/Cycle
AIX
APL2
Application Development
AS/400
BookMaster
CICS
CICS OS/2
CUA
Common User Access
CSP/AD
CSP/AE
CSP/2AD
CSP/370AD
CSP/370RS
C370
DATABASE 2
DB2
DFSMS/MVS
GDDM
IBM
IMS/ESA
MVS/DFP

MVS/ESA
MVS/XA
MVS/SP
Operating System/2
OS/2
OS/400
Personal System/2
PS/2
Presentation Manager
RACF
Repository Manager
Repository Manager/MVS
Resource Access Control Facility
SAA
Series/1
System Application Architecture
System/370
System/390
VisualAge
VM/XA
VTAM

The following terms are trademarks of other companies:

viii OS/390 V2R8.0 ISPF SCLM Developer’s Guide

C++
HP
HP-UX
Java
Microsoft
Novell
WordPerfect

American Telephone and Telegraph Company
Hewlett-Packard
Hewlett-Packard
Sun Microsystems
Microsoft Corporation
Novell, Inc.
WordPerfect Corporation

Windows is a trademark of Microsoft Corporation.

Notices ix

x OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Preface

This book provides reference and usage information, along with conceptual and
functional descriptions of the Software Configuration and Library Manager
(SCLM). This book also contains step-by-step information for setting up and
maintaining an SCLM project environment. It describes how to establish and
monitor a database and explains the library functions.

Who Should Use This Book

This book is for application developers whose projects are controlled by SCLM.
This book is also for project managers who use SCLM to manage the development
process.

What Is in This Book

This manual assumes that you are familiar with the operation of ISPF in the MVS*
environment.

Part One of this book is the Project Manager’s Guide:

Chapter 7. The Software Configuration and Library Manager —SCLM, provides
information on the SCLM project database and the terminology used. The
chapter describes the library structure and naming conventions used when you
define and maintain SCLM projects.
Chapter 8. Using SCLM Functions, describes how to use the ISPF dialog
interface, select SCLM functions to retrieve or process certain information, and
generate reports on the information stored in project databases. It also describes
information stored in accounting, cross-reference, and intermediate records for
members in the project databases.
Chapter 9. Development Scenario, is a programmer scenario that describes the
tasks typically performed by SCLM users. This chapter provides step-by-step
instructions on how to use the basic SCLM functions to control development
projects.
Chapter 10. Architecture Definition, describes architecture configuration and
dependency control statements and their uses. It provides examples of each
kind of architecture member and describes the special command statements that
the architecture members require. It also provides an example of the format of
each statement and lists any restrictions.
Chapter 11. Managing Complex Projects, describes advanced topics that aid in
managing complex configurations.

Part Two of this book is the Developer’s Guide:

Chapter 1. Defining the Project Environment, describes how to generate a
project definition. It explains the steps that enable you to create the database
that best meets the needs of your project. The chapter includes step-by-step
instructions for setting up the SCLM sample project included with the ISPF
product. After completing the steps described in this chapter, you can
experiment with basic SCLM operations using the sample project hierarchy.

© Copyright IBM Corp. 1990, 1999 xi

Chapter 2. Additional Project Manager Tasks, describes additional tasks that
project managers perform to maintain SCLM projects. This chapter discusses
backing up and recovering a project database, using authorization codes to
control SCLM operations, developing and maintaining projects concurrently,
and implementing verification and exit routines for SCLM projects.
Chapter 3. Converting Projects to SCLM, describes the steps required to convert
existing ISPF software development projects to SCLM.
Chapter 4. Language Definition Considerations describes setup operations you
must perform to create a language definition for SCLM to use.
Defining a New Language to SCLM, describes the control structures used to
manage SCLM functions and illustrates how to define new languages. It also
contains information on converting JCL decks to language definitions.
Chapter 5. Using SCLM and Information Manager, illustrates the interaction
between SCLM and Information Manager through the use of a sample program.
Chapter 6. Understanding and Using the Customizable Parsers, describes the
REXX parsers supplied with SCLM and provides examples of how to customize
them.

The Appendixes offer advanced reference material:

Appendix. SCLM Variables and MetaVariables lists SCLM variables and
metavariables used in various stages of SCLM processing.
SCLM Support for CSP/370AD 4.1, gives an overview of SCLM support for
Cross System Product 3.3 and 4.1 applications, and describes the steps the
project manager and programmers must take to add this support.
Chapter 13. SCLM Support for DB2, General Information, describes how to
configure SCLM and DB2 to work together.
Chapter 14. SCLM Support for Workstation Builds, describes how to set up and
use SCLM to do builds on the workstation.

The Glossary of SCLM Terms and the Index sections are available for your
reference.

xii OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|

Summary of Changes

OS/390 V2R8.0 ISPF contains the following changes and enhancements:
v ISPF Product and Library Changes
v ISPF Dialog Manager Component Changes
v ISPF PDF Component Changes
v ISPF SCLM Component Changes
v ISPF Client/Server Component Changes

ISPF Product Changes

Changes to the ZENVIR variable. Characters 1 through 8 contain the product name
and sequence number in the format ISPF x.y, where x.y indicates:
v <= 4.2 means the version.release of ISPF
v = 4.3 means ISPF for OS/390 release 2
v = 4.4 means ISPF 4.2.1 and ISPF for OS/390 release 3
v = 4.5 means ISPF for OS/390 Version 2 Release 5.0
v = 4.8 means ISPF for OS/390 Version 2 Release 8.0

The ZENVIR variable is used by IBM personnel for internal purposes. The x.y
numbers DO NOT directly correlate to an ISPF release number in all cases. For
example, as shown above, a ZENVIR value of 4.3 DOES NOT mean ISPF Version 4
Release 3. NO stand-alone version of ISPF exists above ISPF Version 4 Release 2
Modification 1.

The ZOS390RL variable contains the OS/390 release on your system.

The ZISPFOS system variable contains the level of ISPF code that is running as
part of the OS/390 release on your system. This might or might not match
ZOS390RL. For this release, the variable contains ISPF for OS/390 Version 2
Release 8.0.

The ZPFKEY system variable contains PFKey values.

Support of CCSIDs 1140 through 1149 was added so the EURO currency symbol
can be used in ISPF.

The Samples and Macros libraries each have an index member called @INDEX.

ISPF DM Component Changes

The DM component of ISPF includes the following new functions and
enhancements:
v Support added for ″VER(&variable, DSNAMEQ)″.
v Support added for four-digit year on TBSTATS command and Option 7.4.
v Support added for four-digit year on TBSORT command.
v Message numbers were added to ISPF Line Mode messages.
v Support added for date format in Configuration table.
v Support added for a print utility exit for ISPF termination and Log/List

commands.
v Support added for NEXT and PREV commands for Dialog Test Tables.

© Copyright IBM Corp. 1990, 1999 xiii

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

v The ZSCRNAME modifiable shared variable, containing the current screen
name, was added.

v The ZPFKEY variable, which returns the name of the PFKey on exit from a
panel, was added.

v The TPUT buffer size variable was added to the configuration table.
v The ISPSPROF system variables were moved to the configuration table.
v Support was added for commands chained after the START command.
v ISPDTLC enhancements:

– New invocation options: NOPLEB / PLEB, NOMCOMMENT /
MCOMMENT.

– New tags: ATTENTION.
– Added ″German to Swiss German″ character transform to create Swiss

German panels from German DTL source files.
– Expanded number of DTL source files for interactive processing from 4 to 12.
– Allow DTL type comments (<: −− or <!−−) in MVS profile data stream.
– Allow SOURCE tag within ABC, AREA, PANEL, and REGION tags.
– Added ″Options″ to action bar of interactive panel as an alternate method of

setting conversion options.
– Added support for macro tags.

ISPF PDF Component Changes

The ISPF PDF component contains the following new functions and enhancements:
v Conversion of the ISPF configuration table to a keyword format.
v Introduction of an interactive tool to create and update the keyword file and to

build the needed load module from the keyword file.
v Edit CUT and PASTE commands. Data is saved in data spaces with multiple

clipboards available.
v The Edit MOVE, COPY, CREATE, and REPLACE commands now accept a data

set name or data set name and member name as a parameter.
v A VSAM editor or browser can be specified in the configuration table and is

invoked automatically when a VSAM data set it specified in Options 1, 2, 3, or
11.

v Through the EPDF command, Edit, View, and Browse functions are available
from any command line.

v A new edit macro VOLUME command to retrieve the volume of the data set
being edited.

v The edit macro RECFM has been enhanced to return the full record format
rather than just F or V.

v The new edit macro SESSION command returns EDIT, EDIF, or VIEW, as well as
indicating whether the session was initiated from SCLM.

v Edit STATS mode is no longer forced to OFF if a sequential data set is edited.
The STATS mode is simply ignored.

v The target data set for the Move/Copy utility or the Edit CREATE and
REPLACE commands can be allocated automatically if it does not exist.

v Edit highlighting of FIND strings and the cursor phrase is enabled for data
wider than 256 bytes.

v When the View REPLACE command is used to update the member being
viewed, the confirmation panel shows whether the member has been updated by
someone else during the View session.

xiv OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

v LMMDISP, LMMFIND, and LMMLIST return individual variables for load
module statistics when STATS(YES) is specified.

v The COBOL options and PL/I options in Foreground and Batch have been
consolidated into 1 COBOL option and 1 PL/I option.

v Data set information processes multivolume data sets with more than 20
volumes.

v Member list REFRESH command added.
v Member list SORT and LOCATE honor the collating sequence table in the PDF

translate tables.
v The creation date is displayed on the Confirm Delete panel for VSAM data sets.
v AIX paths are identified in Option 3.4 with *PATH* in the volume column.
v REFLIST function improved.
v A warning message displays on the first data change made while in View.
v RIGHT and LEFT commands are supported in member list to enable the

presentation of additional data such as full 4–character year dates.
v The LMMDISP service allows the selection of members that do not exist in the

data set being processed.
v SuperC supports VSAM files.
v SuperC supports the FMSTOP performance option which stops on the first

mismatch for file compare. FMSTOP is also supported for string searches.

ISPF SCLM Component Changes

The ISPF SCLM component contains the following new functions and
enhancements:
v When a language that is not valid is specified on the SPROF panel, a scrollable

table display of the valid languages is presented so the user can choose the
desired language.

v ISPLNK is a valid CALLMETH for non-BUILD translators.
v A sample DTL parser and translator are available.
v Additional samples added to SAMPLIB.
v An SCLM EDIT service was added to enable editing of SCLM controlled parts

from a dialog.
v The data set name and member is added to the SPROF panel (FLMEINFO) to

assist users when selecting a language for a part.
v The ability to specify that SCLM temporary load libraries should be allocated as

PDSEs has been added.
v Two new exit points added.
v SCLM warning messages issued by the ISPF editor when an SCLM controlled

member is edited are only issued if the member’s directory entry indicates the
member is SCLM controlled.

v SCLM Versioning can be directed to ignore sequence number differences.

ISPF Client/Server Component Changes

The ISPF Client/Server Component enables a panel to be displayed unchanged
(except for panels with graphic areas) at a workstation using the native display
function of the operating system of the workstation. ISPF manuals call this
″running in GUI mode.″

Summary of Changes xv

|
|

|
|

|
|

|

|
|

|

|

|

|

|
|

|
|

|

|
|

|
|

|
|

|
|
|

|

|

|

|
|

|
|

|
|

|

|
|
|

|

|
|

|
|
|
|

The ISPF Client/Server component changes are:
v Support added to provide for an automatic download of the Client/Server

component
v Enhanced usability and function of the Client/Server component download

panel
v Support added to enable initiation of a workstation connection (without GUI

display) while in split screen mode.
v New WSCON and WSDISCON commands to improve entry to the ISPF C/S

interface.
v Enable one or more ISPF screens to Switch back and forth between GUI and

3270 modes by using the new Switch commands.

ISPF User Interface Considerations

Many changes have been made to the ISPF Version 4 user interface to conform to
CUA guidelines. If you prefer to change the interface to look and act more like the
Version 3 interface, you can do the following:
v Use the CUAATR command to change the screen colors
v Use the ISPF Settings panel to specify that the TAB or HOME keys position the

cursor to the command line rather than to the first action bar item
v Set the command line to the top of the screen by deselecting Command line at

bottom on the ISPF Settings panel
v Set the primary keys to f13–24 by selecting 2 for Primary range on the Tailor

Function Key Definition Display panel
v Use the KEYLIST OFF command to turn keylists off
v Use the PSCOLOR command to change point-and-shoot fields to blue.
v Change the DFLTCOLR field in the PDF configuration table ISRCONFG to

disable action bars and or edit highlighting

ISPF Migration Considerations

When migrating to OS/390 V2R8.0 or higher for the first time, you must convert
your ISPF customization to the new format. Refer to the section entitled The ISPF
Configuration Table in the ISPF Planning and Customizing manual.

When migrating from one version of ISPF to another, you must be sure to
reassemble and re-link the SCLM project definition.

ISPF Profiles

Major changes have been made to the ISPF profiles for ISPF Version 4.2 and
OS/390 V2R8.0 ISPF. If you are moving back and forth between a Version 3.3 or
Version 3.5 system and a Version 4.2 or an OS/390 V2R8.0 system, you must run
with separate profiles.

Year 2000 Support for ISPF

ISPF is fully capable of using dates for the year 2000 and beyond. All of your
existing applications should continue to run (some may need minor changes, as
explained below) when the year 2000 comes. The base support for the year 2000
was added to OS/390 Version 1 Release 2.0, but the same level of support is

xvi OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|

|
|

|
|

|
|
|

|
|

|

|
|
|
|

|

|
|
|
|

available for ISPF Version 3.5, ISPF Version 4, and OS/390 Version 1 Release 1.0 as
well. To get support for the earlier versions, be sure that your system has the
correct APARs installed. All ISPF APARs that add or correct function relating to the
year 2000 contain the YR2000 identifier in the APAR text. You should search for
these APARs to ensure you have all the function available.

What function is included?
v ISPF Dialog variable ZSTDYEAR now correctly shows the year for dates past

1999. Earlier versions always showed the first 2 characters of the year as 19.
v A new ISPF dialog variable (ZJ4DATE) is available for Julian dates with a 4–digit

year.
v An ISPF Configuration Table field enables PDF to interpret 2 character year

dates as either a 19xx or 20xx date. The default value is 65. Any 2-character year
date whose year is less than or equal to this value is considered a 20xx date,
anything greater than this value is considered 19xx. To see what value has been
set by the ISPF Configuration Table, use the new ZSWIND variable.

v New parameters in the LMMSTATS service (CREATED4 and MODDATE4) for
specifying 4-character year dates. All existing parameters still exist and you can
continue to use them. If both the 2-character year date parameters (CREATED
and MODDATE) and the 4-character year date parameters (CREATED4 and
MODDATE4) are specified, the 2-character versions are used.

v Dialog variables ZLC4DATE and ZLM4DATE have been added.
– You can set them before making an LMMREP or LMMADD call. Do this to

specify a 4-character created or last modified date to set in the ISPF statistics.
– They are set by LMMFIND, LMMLIST and LMMDISP to the current value of

the created and last modified dates in the ISPF statistics.

What might need to change? Some minor changes to your existing ISPF dialogs
might be necessary, especially in ISPF dialogs that use the Library Access Services
to manipulate ISPF member statistics.
v For those services that accept both 4-character year dates and 2-character year

dates, you can specify one or the other. If you specify both, the 2-character year
date is used to avoid affecting existing dialogs. When the 2-character year date is
used, the configuration table field mentioned above is used to determine
whether the date should be interpreted as 19xx or 20xx.

v ISPF will not necessarily show 4-character dates in all circumstances but it will
process them correctly. For example, a member list might only display
2-character year dates but will sort those dates in the proper order.

v SCLM stores dates past the year 1999 in a new internal format. If an accounting
file contains dates in this new format, it cannot be processed by a system
without year 2000 support. Accounting files without dates past 1999 can be
processed with or without the year 2000 support.

v No conversion of the LMF control file is necessary.

Summary of Changes xvii

|
|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

xviii OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Migrating from Previous Versions of SCLM

When migrating from one release of ISPF to another, you must be sure to
reassemble and re-link all of your SCLM Project Definitions using the macros
provided with the new release. If you have modified any of the SCLM-provided
macros then you must re-integrate those changes with the new SCLM-provided
macros. Failure to do this results in unpredictable results during SCLM execution.

Attention

Use of parsers that return include sets other than the default or COMPOOL
include set will result in an accounting record with a new format. Releases of
SCLM before ISPF Version 4 Release 2 will generate error messages and may
not be able to complete processing if they read an accounting record with this
new format. To avoid problems with the use of previous releases of SCLM, it
is recommended that only the default or COMPOOL include set be used until
a project no longer uses releases of SCLM before 4.2.

In order to take advantage of the enhanced include search capabilities provided by
SCLM 4.2 or later, changes must be made to the project definition. Additional
function is available by updating your parsers to return include set information
about the includes found by the parsers.

JOVIAL compools are now processed and displayed with other includes using the
COMPOOL include set.
v The Accounting Record panel in the Library Utility displays compools in the

count of includes for a member in the list of includes instead of on a separate
panel.

v Use the @@FLMNIN, @@FLM$IN, and @@FLM$IS DBUTIL variables to get
information on compools and other includes instead of the @@FLM$CM and
FLMNCM variables (which are no longer supported).

JOVIAL compools are now treated as standard includes that come from the
COMPOOL include set. Build no longer ensures that compool includes are output
members.

Note: When you migrate from one release of ISPF to the next, you must be sure to
reassemble and relink the project definition.

Year 2000 Support

With the release of OS/390 Version 1 Release 3.0, SCLM began supporting dates
beyond the year 2000. This has caused a change to the format of date fields stored
in the SCLM VSAM databases. After you have used this release with a system date
after December 31, 1999, you cannot go back to an earlier release of SCLM unless it
also has support for dates beyond the year 2000.

The internal date format used by SCLM has also changed. The length and format
of the $acct_info and $list_info date fields returned by SCLM services are
different. These fields are now 8 characters in length and have the format

© Copyright IBM Corp. 1990, 1999 xix

|

|
|
|
|
|

|
|
|

YYYYMMDD (year, month, day). In addition, the 1–character alignment field in
the $acct_info structure is now three characters long. Any user-written programs
that use the SCLM service interface must be modified accordingly.

FLMALLOC Processing for IOTYPE S

A change has been made to SCLM FLMALLOC processing for IOTYPE S. When
the following criteria are met, SCLM allocates the PDS member directly from the
SCLM-controlled library, rather than copying it first to a sequential data set. The
criteria are:
1. There is only one input.
2. The input is from a SINC statement.
3. The KEYREF on the FLMALLOC statement is SINC.
4. You are NOT doing input list processing.

Any user defined translators must take into account that the DDNAME allocated
can be either a sequential data set or a PDS member.

Load Module Accounting Records and SSI Information

In ISPF Version 4.2 without APAR OW18306, when load modules without an SSI
area (load modules that were linked without the SETSSI option) were migrated
into SCLM, or when load modules were built using an architecture definition that
did not include the LOAD keyword, the dates and times in the accounting records
for the load modules were set to zeroes or random characters. Starting with
OS/390 V1R3.0, or with ISPF Version 4.2 with APAR OW18306, it is not necessary
to build a load module with the SETSSI option in order to migrate it into SCLM
and still have correct accounting and SSI information.

The SCLM MIGRATE operation generates the data for the SSI area and updates the
accounting record with the correct dates and times. Similarly, SCLM BUILD
generates the SSI information and sets the correct dates and times in the
accounting records for load modules that are generated without an LEC
architecture definition. If you are migrating from a system with ISPF Version 4.2
without APAR OW18306 or earlier release, take these actions:
v If you have previously migrated load modules into SCLM that did not have the

SSI information set, then you should migrate these modules into SCLM again.
Remigrating these members ensures that the SSI information is set and that the
accounting dates and times are correct.

v If you have previously generated load modules in SCLM without an LEC
architecture definition (meaning that the accounting record date and time fields
are zeroes or random characters) then these modules are rebuilt the first time a
build is performed after installing OS/390 V2R8.0 ISPF. This rebuild is necessary
to ensure that the SSI and accounting record information for the load modules
are in synch and have been updated with valid data. You might want to
schedule the first build of your projects with the affected load modules at a time
that minimizes the impact to your system.

xx OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|
|
|

What’s in the OS/390 V2R8.0 ISPF library?

You can order the ISPF books using the numbers provided below.

OS/390 V2R8.0 ISPF

Title Order Number

OS/390 V2R8.0 ISPF Dialog Tag Language Guide and Reference SC28-1219-03

OS/390 V2R8.0 ISPF Planning and Customizing SC28-1298-03

OS/390 V2R8.0 ISPF User’s Guide SC28-1239-03

OS/390 V2R8.0 ISPF Services Guide SC28-1272-03

OS/390 V2R8.0 ISPF Dialog Developer’s Guide and Reference SC28-1273-03

OS/390 V2R8.0 ISPF Reference Summary SC28-1308-03

OS/390 V2R8.0 ISPF Edit and Edit Macros SC28-1312-03

OS/390 V2R8.0 ISPF Library Management Facility SC28-1317-03

OS/390 V2R8.0 ISPF Messages and Codes GC28-1326-03

OS/390 V2R8.0 ISPF Software Configuration and Library Manager
Project Manager’s and Developer’s Guide

SC34-4750-01

OS/390 V2R8.0 ISPF Software Configuration and Library Manager
Reference

SC28-1320-03

OS/390 V2R8.0 ISPF Application Server User’s Guide and Reference SC34-4752-01

Entire library Bill of Forms SBOF-8567

The licensed books that were declassified in OS/390 Version 2 Release 4 appear on
the OS/390 Online Library Collection, SK2T-6700.

The remaining licensed books for OS/390 Version 2 appear on the OS/390
Licensed Product Library, LK2T-2499, in unencrypted form.

© Copyright IBM Corp. 1990, 1999 xxi

xxii OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Elements and Features in OS/390

You can use the following table to see the relationship of a product you are
familiar with and how it is referred to in OS/390 Version 2 Release 8.0. OS/390
V2R8.0 is made up of elements and features that contain function at or beyond the
release level of the products listed in the following table. The table gives the name
and level of each product on which an OS/390 element or feature is based,
identifies the OS/390 name of the element or feature, and indicates whether it is
part of the base or optional. For more compatibility information about OS/390
elements see OS/390 Planning for Installation, GC28-1726

Product Name and Level Name in OS/390 Base or Optional

BookManager BUILD/MVS V1R3 BookManager BUILD optional

BookManager READ/MVS V1R3 BookManager READ base

MVS/Bulk Data Transfer V2 Bulk Data Transfer (BDT) base

MVS/Bulk Data Transfer File-to-File V2 Bulk Data Transfer (BDT) File-to-File optional

MVS/Bulk Data Transfer SNA NJE V2 Bulk Data Transfer (BDT) SNA NJE optional

IBM OS/390 C/C++ V1R2 C/C++ optional

DFSMSdfp V1R3 DFSMSdfp base

DFSMSdss DFSMSdss optional

DFSMShsm DFSMShsm optional

DFSMSrmm DFSMSrmm optional

DFSMS/MVS Network File System V1R3 DFSMS/MVS Network File System base

DFSORT R13 DFSORT optional

EREP MVS V3R5 EREP base

FFST/MVS V1R2 FFST/MVS base

GDDM/MVS V3R2

v GDDM-OS/2 LINK
v GDDM-PCLK

GDDM base

GDDM-PGF V2R1.3 GDDM-PGF optional

GDDM-REXX/MVS V3R2 GDDM-REXX optional

IBM High Level Assembler for MVS & VM
& VSE V1R2

High Level Assembler base

IBM High Level Assembler Toolkit High Level Assembler Toolkit optional

ICKDSF R16 ICKDSF base

ISPF V4R2M1 ISPF base

Language Environment for MVS & VM V1R5 Language Environment base

Language Environment V1R5 Data
Decryption

Language Environment Data Decryption optional

© Copyright IBM Corp. 1990, 1999 xxiii

Product Name and Level Name in OS/390 Base or Optional

MVS/ESA SP V5R2.2

BCP

ESCON Director Support

Hardware Configuration Definition
(HCD)

JES2 V5R2.0

JES3 V5R2.1

LANRES/MVS V1R3.1

IBM LAN Server for MVS V1R1

MICR/OCR Support

OS/390 UNIX System Services

OS/390 UNIX Application Services

OS/390 UNIX DCE Base Services (OSF
DCE level 1.1)

OS/390 UNIX DCE Distributed File
Services (DFS) (OSF DCE level 1.1)

OS/390 UNIX DCE User Data Privacy

SOMobjects Application Development
Environment (ADE) V1R1

SOMobjects Runtime Library (RTL)

SOMobjects service classes

BCP or MVS

ESCON Director Support

Hardware Configuration Definition
(HCD)

JES2

JES3

LANRES

LAN Server

MICR/OCR Support

OS/390 UNIX System Services

OS/390 UNIX Application Services

OS/390 UNIX DCE Base Services

OS/390 UNIX DCE Distributed File
Services (DFS)

OS/390 UNIX DCE User Data Privacy

SOMobjects Application Development
Environment (ADE)

SOMobjects Runtime Library (RTL)

SOMobjects service classes

base

base

base

base

optional

base

base

base

base

base

base

base

optional

optional

base

base

Open Systems Adapter Support Facility
(OSA/SF) R1

Open Systems Adapter Support Facility
(OSA/SF)

base

MVS/ESA RMF V5R2 RMF optional

OS/390 Security Server Resource Access Control Facility (RACF)
v DCE Security Server
v OS/390 Firewall Technologies
v Lightweight Directory Access Protocol

(LDAP) Client and Server
v Open Cryptographic Enhanced Plug-ins

(OCEP)

optional

SDSF V1R6 SDSF optional

SMP/E SMP/E base

Softcopy Print base

SystemView for MVS Base SystemView for MVS Base base

IBM TCP/IP V3R1

v TCP/IP CICS Sockets

v TCP/IP IMS Sockets

v TCP/IP Kerberos

v TCP/IP Network Print Facility (NPF)

v TCP/IP OS/390 Communications Service
IP Applications

v TCP/IP OS/2 Offload

TCP/IP

v TCP/IP CICS Sockets

v TCP/IP IMS Sockets

v TCP/IP Kerberos

v TCP/IP Network Print Facility (NPF)

v TCP/IP OS/390 Communications Service
IP Applications

v TCP/IP OS/2 Offload

base

v optional

v optional

v optional

v optional

v optional

v optional

TIOC R1 TIOC base

Time Sharing Option Extensions (TSO/E)
V2R5

TSO/E base

xxiv OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Product Name and Level Name in OS/390 Base or Optional

VisualLift for MVS V1R1.1 v VisualLift Run-Time Environment (RTE)
v VisualLift Application Development

Environment (ADE)

v base
v optional

VTAM V4R3 with the AnyNet feature VTAM base

3270 PC File Transfer Program V1R1.1 3270 PC File Transfer Program base

Elements and Features in OS/390 xxv

xxvi OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The ISPF User Interface

ISPF provides an action bar-driven interface that exploits many of the usability
features of Common User Access (CUA) interfaces. Refer to Object-Oriented Interface
Design: IBM Common User Access Guidelines for additional information.

The panels look different than in Version 3: all screens are in mixed case, and most
have action bars at the top. These action bars give you a new way to move around
in the product as well as access to command nesting. Command nesting allows
you to suspend an activity while you perform a new one rather than having to end
a function to perform another function.

This chapter primarily explains the action bar-driven interface and the use of
ISPF’s graphical user interface (GUI).

Some Terms You Should Know

The following terms are used in this book:

action bar. The area at the top of an ISPF panel that contains choices that give you access to actions available on
that panel. When you select an action bar choice, ISPF displays a pull-down menu.

pull-down menu. A list of numbered choices extending from the selection you made on the action bar. The action
bar selection is highlighted; for example, Utilities in Figure 1 on page xxix appears highlighted on your screen. You
can select an action either by typing in its number and pressing Enter or by selecting the action with your cursor.
ISPF displays the requested panel. If your choice contains an ellipsis (...), ISPF displays a pop-up window. When you
exit this panel or pop-up, ISPF closes the pull-down and returns you to the panel from which you made the initial
action bar selection.

ellipsis. Three dots that follow a pull-down choice. When you select a choice that contains an ellipsis, ISPF displays
a pop-up window.

pop-up window. A bordered temporary window that displays over another panel.

modal pop-up window. A type of window that requires you to interact with the panel in the pop-up before
continuing. This includes cancelling the window or supplying information requested.

modeless pop-up window. A type of window that allows you to interact with the dialog that produced the pop-up
before interacting with the pop-up itself.

point-and-shoot text. Text on a screen that is cursor-sensitive. See “Point-and-Shoot Text Fields” on page xxxii for
more information.

push button. A rectangle with text inside. Push buttons are used in windows for actions that occur immediately
when the push button is selected (available only when you are running in GUI mode).

function key. In previous releases of ISPF, a programmed function (PF) key. This is a change in terminology only.

select. In conjunction with point-and-shoot text fields and action bar choices, this means moving the cursor to a
field and simulating Enter.

mnemonics. Action bar choices can be defined with a underscored letter in the action bar choice text. In host mode
you can access the action bar choice with the ACTIONS command and parameter ’x’, where ’x’ is the underscored
letter in the action bar choice text. In GUI mode you can use a hot key to access a choice on the action bar; that is,
you can press the ALT key in combination with the letter that is underscored in the action bar choice text.

© Copyright IBM Corp. 1990, 1999 xxvii

How to Navigate in ISPF without Using Action Bars

If you use a non-programmable terminal to access OS/390 V2R8.0 ISPF and you do
not want to take advantage of the command nesting function, you can make
selections the same way you always have: by typing in a selection number and
pressing Enter.

How to Navigate in ISPF Using the Action Bar Interface

Most ISPF panels have action bars at the top; the choices appear on the screen in
white by default. Many panels also have point-and-shoot text fields, which appear
in turquoise by default. The panel shown in Figure 3 on page xxx has both.

Action Bars

Action bars give you another way to move through ISPF. If the cursor is located
somewhere on the panel, there are several ways to move it to the action bar:
v Use the cursor movement keys to manually place the cursor on an action bar

choice.
v Type ACTIONS on the command line and press Enter to move the cursor to the

first action bar choice.
v Press F10 (Actions) or the Home key to move the cursor to the first action bar

choice.
If mnemonics are defined for action bar choices, you can:
– In 3270 mode, on the command line, type ACTIONS and the mnemonic letter

that corresponds to an underscored letter in the action bar choice text. This
results in the display of the pull-down menu for that action bar choice.

– In 3270 mode, on the command line enter the mnemonic letter that
corresponds to an underscored letter in the action bar choice text, and press
the function key assigned to the ACTIONS command. This results in the
display of the pull-down menu for that action bar choice.

– In GUI mode, you can use a hot key to access a choice on an action bar or on
a pull-down menu; that is, you can press the ALT key in combination with
the mnemonic letter that is underscored in the choice text to activate the text.

Use the tab key to move the cursor among the action bar choices. If you are
running in GUI mode, use the right and left cursor keys.

Notes:

1. ISPF does not provide a mouse emulator program. This book uses select in
conjunction with point-and-shoot text fields and action bar choices to mean
moving the cursor to a field and simulating Enter.

Note: Some users program their mouse emulators as follows:
v Mouse button 1 – to position the cursor to the pointer and simulate

Enter
v Mouse button 2 – to simulate F12 (Cancel).

2. If you want the Home key to position the cursor at the first input field on an
ISPF panel, type SETTINGS on any command line and press Enter to display the
ISPF Settings panel. Deselect the Tab to action bar choices option.

3. If you are running in GUI mode, the Home key takes you to the beginning of
the current field.

The ISPF User Interface

xxviii OS/390 V2R8.0 ISPF SCLM Developer’s Guide

When you select one of the choices on the action bar, ISPF displays a pull-down
menu. Figure 1 shows the pull-down menu displayed when you select Utilities on
the ISPF Primary Option Menu action bar.

To select a choice from the Utilities pull-down menu, type its number in the entry
field (underlined) and press Enter or select the choice. To cancel a pull-down menu
without making a selection, press F12 (Cancel). For example, if you select choice
9, ISPF displays the Command Table Utility pop-up, as shown in Figure 2 on
page xxx.

Note: If you entered a command on the command line prior to selecting an action
bar choice, the command is processed, and the pull-down menu is never
displayed. The CANCEL, END, and RETURN commands are exceptions.
These three commands are not processed and the cursor is repositioned to
the first input field in the panel body. If there is no input field, the cursor is
repositioned under the action bar area. If you are running in GUI mode and
select an action bar choice, any existing command on the command line is
ignored.

�1� The selected action bar choice is highlighted.

Figure 1. Panel with an Action Bar Pull-Down Menu

The ISPF User Interface

The ISPF User Interface xxix

Figure 2. Pop-Up Selected from an Action Bar Pull-Down

�1� Action bar. You can select any of the action bar choices and display a pull-down.

�2� Options. The fields in this column are point-and-shoot text fields.

�3� Dynamic status area. You can specify what you want to be displayed in this area.

Figure 3. Panel with an Action Bar and Point-and-Shoot Fields

The ISPF User Interface

xxx OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Action Bar Choices

The action bar choices available vary from panel to panel, as do the choices
available from their pull-downs. However, Menu and Utilities are basic action bar
choices, and the choices on their pull-down menus are always the same.

Menu Action Bar Choice

The following choices are available from the Menu pull-down:

Settings Displays the ISPF Settings panel

View Displays the View Entry panel

Edit Displays the Edit Entry panel

ISPF Command Shell Displays the ISPF Command Shell panel

Dialog Test... Displays the Dialog Test Primary Option panel

Other IBM Products... Displays the Additional IBM Program
Development Products panel

SCLM Displays the SCLM Main Menu

ISPF Workplace Displays the Workplace entry panel

Status Area... Displays the ISPF Status panel

Exit Exits ISPF.

Note: If a choice displays in blue (the default) with an asterisk as the first digit of
the selection number (if you are running in GUI mode, the choice will be
grayed), the choice is unavailable for one of the following reasons:
v Recursive entry is not permitted here
v The choice is the current state; for example, RefMode is currently set to

Retrieve in Figure 4 on page xxxii.

The ISPF User Interface

The ISPF User Interface xxxi

Utilities Action Bar Choice

The following choices are available from the Utilities pull-down:
Library Displays the Library Utility panel
Data Set Displays the Data Set Utility panel
Move/Copy Displays the Move/Copy Utility panel
Data Set List Displays the Data Set List Options panel
Reset Statistics Displays the Reset ISPF Statistics panel
Hardcopy Displays the Hardcopy Utility panel
Download... Displays the panel that enables you to download

workstation clients and other files from the host.
Outlist Displays the Outlist Utility panel
Commands... Displays the Command Table Utility panel
Reserved Reserved for future use by ISPF; an unavailable

choice
Format Displays the Format Specification panel
SuperC Displays the SuperC Utility panel
SuperCE Displays the SuperCE Utility panel
Search-for Displays the Search-For Utility panel.
Search-forE Displays the Search-ForE Utility panel.

Point-and-Shoot Text Fields

Point-and-shoot text fields are cursor-sensitive; if you select a field, the action
described in that field is performed. For example, if you select Option 0, Settings,
in Figure 3 on page xxx, ISPF displays the ISPF Settings panel.

Note: If you have entered a command on the command line, this command is
processed before any point-and-shoot command unless you are running in
GUI mode.

Figure 4. An Unavailable Choice on a Pull-Down

The ISPF User Interface

xxxii OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The cursor-sensitive portion of a field often extends past the field name. Until you
are familiar with this new feature of ISPF, you might want to display these fields
in reverse video (use the PSCOLOR command to set Highlight to REVERSE).

Note: You can use the Tab key to position the cursor to point-and-shoot fields by
selecting the Tab to point-and-shoot fields option on the ISPF Settings panel
(Option 0).

Function Keys

ISPF uses CUA-compliant definitions for function keys F1–F12 (except inside the
Edit function). F13–F24 are the same as in ISPF Version 3. By default you see the
CUA definitions because your Primary range field is set to 1 (Lower - 1 to 12).

To use non-CUA-compliant keys, select the Tailor function key display choice
from the Function keys pull-down on the ISPF Settings (option 0) panel action bar.
On the Tailor Function Key Definition Display panel, specify 2 (Upper - 13 to 24)
in the Primary range field.

The following function keys help you navigate in ISPF:

F1 Help. Displays Help information. If you press F1 (and it is set to Help)
after ISPF displays a short message, a long message displays in a pop-up
window.

F2 Split. Divides the screen into two logical screens separated by a horizontal
line or changes the location of the horizontal line.

Note: If you are running in GUI mode, each logical screen displays in a
separate window.

F3 Exit (from a pull-down). Exits the panel underneath a pull-down.

F3 End. Ends the current function.

F7 Backward. Moves the screen up the scroll amount.

F8 Forward. Moves the screen down the scroll amount.

F9 Swap. Moves the cursor to where it was previously positioned on the
other logical screen of a split-screen pair.

F10 Actions. Moves the cursor to the action bar. If you press F10 a second time,
the cursor moves to the command line.

F12 Cancel. Issues the Cancel command. Use this command to remove a
pull-down menu if you do not want to make a selection. F12 also moves
the cursor from the action bar to the Option ==> field on the ISPF Primary
Option Menu. See ISPF Dialog Developer’s Guide and Reference for
cursor-positioning rules.

F16 Return. Returns you to the ISPF Primary Option Menu or to the display
from which you entered a nested dialog. RETURN is an ISPF system
command.

Selection Fields

OS/390 V2R8.0 ISPF uses the following CUA-compliant conventions for selection
fields:

The ISPF User Interface

The ISPF User Interface xxxiii

A single period (.)
Member lists that use a single period in the selection field recognize only a
single selection. For example, within the Edit function you see this on your
screen:
│EDIT USER1.PRIVATE.TEST ROW 00001 of 00002 │
│ Name VV MM Created Changed Size Init Mod ID │
│ . MEM1 01.00 94/05/12 94/07/22 40 0 0 USER1 │
│ . MEM2 01.00 94/05/12 94/07/22 30 0 0 KEENE │

You can select only one member to edit.

A single underscore (_)
Selection fields marked by a single underscore prompt you to use a slash
(/) to select the choice. You may use any non-blank character. For example,
the Panel display CUA mode field on the ISPF Settings panel has a single
underscore for the selection field:
Options
Enter "/" to select option
_ Command line at bottom
_ Panel display CUA mode
_ Long message in pop-up

Note: If you are running in GUI mode, this type of selection field displays
as a check box; that is, a square box with associated text that
represents a choice. When you select a choice, a check mark (in
OS/2) or an X (in Windows) appears in the check box to indicate
that the choice is in effect. You can clear the check box by selecting
the choice again.

An underscored field (____)
Member lists or text fields that use underscores in the selection field
recognize multiple selections. For example, from the Display Data Set List
Option panel, you may select multiple members for print, rename, delete,
edit, browse, or view processing.

Command Nesting

Command nesting allows you to suspend an activity while you perform a new one
rather than having to end a function to perform another function. For example, in
previous versions of ISPF, if you are editing a data set and want to allocate another
data set, you type =3.2 on the command line and press Enter. ISPF ends your edit
session before taking you to the Data Set Utility panel. When you have allocated
the data set and want to return to your edit session, you type =2 and press Enter;
ISPF returns you to the Edit Entry Panel. With OS/390 V2R8.0 ISPF, from your edit
session, select the Data set choice from the Utilities pull-down on the Edit panel
action bar. ISPF suspends your edit session and displays the Data Set Utility panel.
When you have allocated the new data set and end the function, OS/390 V2R8.0
ISPF returns you directly to your edit session rather than to the Edit Entry Panel.

The ISPF User Interface

xxxiv OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Part 1. Project Manager’s Guide

Chapter 1. Defining the Project Environment 3
Overview of Project Manager Tasks. 3

Project Definition Data 3
Generating a Project Environment 4
Step 1: Determine the Project’s Hierarchy . . . 4

Primary Non-Key Group Testing Techniques 6
Step 2: Identify the Types of Data to Support 8
Step 3: Establish Authorization Codes 9

Using Authorization Codes to Control SCLM
Operations 9
Allowing Parallel Updates 11

Step 4: Allocate the PROJDEFS Data Sets . . . 13
Step 5: Allocate the Project Partitioned Data
Sets 13

Data Set Naming Conventions 13
Flexible Naming of Project Partitioned Data
Sets 13
Number of Data Sets to Allocate 15
Versioning Partitioned Data Sets 18
Project Partitioned Data Sets 19
Space Considerations 19

Step 6: Allocate and Create the Control Data
Sets 19

Create the Accounting Data Sets 20
Create the Export Data Sets 22
Create the Audit Control Data Sets 23

Step 7: Protect the Project Environment . . . 25
PROJDEFS Data Sets. 25
Project Partitioned Data Sets 25
Control Data Sets 26

Step 8: Create the Project Definition. 26
Alternate Project Definitions 27
Create the Hierachy Definition 28
Set the Project Control Options 29
Define the Language Definitions 43

Step 9: Assemble and Link the Project
Definition 49

Assemble and Link Example 50
Project Manager Scenario 50

Prerequisites for Defining an SCLM Project 51
Example Project Overview 51
Preparing the Example Project Hierarchy 53
Understanding the Sample Project Definition 56
Preparing the Example Project Data . . . 57

Chapter 2. Additional Project Manager Tasks 61
Splitting Project VSAM Data Sets 61
Backing Up and Recovering the Project
Environment 62
Synchronizing Accounting Data Sets 62
Maintaining Accounting Data Sets 63
Modifying the Delete Group Dialog Interface . . 63

Chapter 3. Converting Projects to SCLM . . . 65
Prerequisites for Existing Hierarchies 65
Create Alternate Project Definitions 65

Create Architecture Definitions for the Project 66
Register Existing PDS Members with SCLM . . . 66
Introducing Fixes to the Converted Hierarchy 67

Chapter 4. Language Definition Considerations 69
Using Multiple Translators in a Language
Definition 70
Invoking User-Defined Parsers 74

Defining Information Tracked by SCLM . . . 74
Writing the Parser 75
Telling SCLM How to Invoke Your Parser . . 75

Processing Conditionally Saved Components . . 85
Example of Processing Conditionally Saved
Components 85
Setting Up the Project Definition. 86

Specifying the Locations of Included Members 87
Example 88

Dynamic Include Tracking 92
Input List Translators 93

Configuring the Input List Translators 93
Defining a New Language to SCLM 94

Using DDnames and DDname Substitution
Lists 94

Compiler Options. 95
Defining a New Language: Step-by-Step 96

Showing Users How to Write CC Architecture
Definitions 105

Convert Your JCL Decks to Architecture
Definitions 106

Defining a Preprocessor to SCLM 107
Passing the Source to the Compiler 109

Converting JCL to SCLM Language Definitions 112
Before You Begin 112
Capabilities and Restrictions 113
Converting JCL Cards to SCLM Macro
Statements 114

Executing Programs 114
Conditional Execution 115
Sample JCL Conversion. 116

Chapter 5. Using SCLM and Information
Manager 123
Required Environment 123
Description of User Program Interaction 123
Input Parameters 123

Option List Format 123
Operands 124

Option List 124
SCLM List 125

Program Flow 125
Program Response to Errors 126

Return Codes 126
Example 126
Pascal Source Data Sets 127

FLM00CCV Pascal Source Files 127
Compilation Instructions for the Sample Program 127

© Copyright IBM Corp. 1990, 1999 1

Chapter 6. Understanding and Using the
Customizable Parsers 131
The Parsers as Shipped 131

Sample Language Definitions 131
Parser Error Listings 132

Modifying the Parsers 132
Adding More Elaborate Parsing Error Messages 133
Appending to the Error Listing File. 134

Compiling the Parsers 135

2 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 1. Defining the Project Environment

This chapter describes the tasks performed by project managers to set up and
maintain an SCLM project environment. The required steps are described in
complete detail, with examples and recommended procedures where applicable.
After you understand the steps discussed in the first part of this chapter, you can
experiment with installing an actual project by completing the steps outlined in
“Project Manager Scenario” on page 50. The data sets used in the scenario are
available as part of the ISPF product.

If SCLM does not appear on any of your menu panels or on your Menu pull-down,
you can still access it by typing TSO SCLM on any ISPF command line, then
pressing Enter. If SCLM is available to your terminal session, the SCLM Main
Menu is displayed. If SCLM has not been installed on your system, or if it has
been installed but is not available to your terminal session, a panel (ISRNOSLM) is
displayed to inform you that SCLM is not available to your terminal session.

Overview of Project Manager Tasks

The primary function of the project manager is to create and manage the project
environment. The SCLM project environment consists of three types of information
associated with an individual project:
v User Application Data (see “User Application Data” on page 139)
v Project Definition Data (see “Project Definition Data”)
v SCLM Control Data (see “Step 6: Allocate and Create the Control Data Sets” on

page 19).

Project Definition Data

The project manager uses the SCLM project definition to generate and maintain the
project environment. A project definition defines the desired development
environment to SCLM for an individual project. Using the project definition, the
product manager can define:
v The structure of the project hierarchy using groups and types
v The languages to use, such as COBOL and Pascal
v The rules to move data within the hierarchy (authorization codes)
v The SCLM options, such as audit and versioning

More than one project definition can be generated for a single project. The main
project definition for an SCLM project is the primary project definition. All other
project definitions for the same project are alternate project definitions. Alternate
project definitions are usually used for performing specific tasks that cannot or
should not be done with the primary project definitions. The use of alternate
project definitions should be kept to a minimum, if any are required.

© Copyright IBM Corp. 1990, 1999 3

Generating a Project Environment

To create the project environment, the project manager should be familiar with
VSAM data sets and MVS high-level qualifiers. It is also helpful if the project
manager understands Job Control Language (JCL).

Because SCLM supports CSP/370AD 4.1 and DATABASE 2 (DB2) processing, the
project manager should determine if any of these programs are to be used with
SCLM, then use the following steps to generate a project environment:

See page

STEP Standard
SCLM

With
CSP/370AD
4.1

With DB2

1.Determine the project’s
hierarchy.

4 291 338

2.Identify the types of data to be
supported.

8 293 338

3.Establish authorization codes. 9 296 339

4.Allocate the PROJDEFS data
sets.

13 296 339

5.Allocate the project partitioned
data sets (PDS).

13 299 339

6.Allocate and create the control
data sets.

19 299 339

7.Protect the project environment. 25 300 339

8.Create the project definition. 26 300 339

9.Assemble and link the project
definition.

49 303 340

Step 1: Determine the Project’s Hierarchy

As a project manager, you are responsible for generating and updating the
hierarchy of the project to accommodate project requirements. This step helps you
plan the project hierarchy. When you have completed this step, you should have a
diagram of the hierarchy with all the groups labeled, as well as an understanding
of how each group is used.

It is usually easier at first to draw a diagram of your hierarchy. This lets you
visualize what the hierarchy looks like. The following rules govern the creation of
hierarchies:
v Each group can have no more than one parent.
v Each group can have multiple groups promoting into it.
v There is no restriction on the total number of groups a hierarchy can have.
v A hierarchical view can contain no more than 123 groups. This is because MVS

has a limit of 123 extents for a concatenated partitioned data set.
v Each hierarchy has one root group, the topmost group.
v It is possible to have more than one hierarchy defined for one project.
v Defining no more than four layers makes it easier to use ISPF tools on the

SCLM-controlled members.

4 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|
|
|

The following two figures show two examples of hierarchies. These hierarchies are
set up based on the development phases potential projects might use. You can
create hierarchies other than those presented here. As a project evolves, the
requirements that the project has on the hierarchy will change. With SCLM, you
can change the hierarchy to meet the needs of the project.

The reasoning behind the hierarchy shown in Figure 5 follows:
v The development groups (USER1, USER2, and USER3) are where all

modifications to SCLM-controlled members are made.
v The INT group is for integrating (combining) all the SCLM-controlled members

from the development groups.
v The TEST group is the group where system or function testing of the application

will take place.
v The RELEASE group will contain the final version of the application being

developed. It is from this group that the application could be put into
production.

The second hierarchy, shown in Figure 6, is different. This hierarchy has two
separate legs. Each leg of the hierarchy contains a separate subsystem of the
application being developed. The stage groups (STAGE1 and STAGE2) in each
hierarchy leg are used for integrating and unit testing the subsystems within each
hierarchy leg. The SYSTEST group is used to combine the subsystems from both
legs of the hierarchy for delivery to a system test organization.

U S E R 1 U SER 3U SER2

R E LE A S E

TE ST

IN T

Figure 5. Example of SCLM Hierarchies

Chapter 1. Defining the Project Environment 5

Use the preceding rules and the requirements of your project to draw your
hierarchy and label each group.

Primary Non-Key Group Testing Techniques

You can use primary non-key groups as a technique to allow integration and
testing of a software application. The technique is useful where integration work
can have far-reaching and undesirable effects, for example, when a global change
to an application affects the majority of developers. The technique is also useful
when schedule or other pressures are such that you must perform high-risk
integration of software. SCLM does not allow you to promote from a primary
non-key group.

In a normal SCLM scenario, you promote code from individual development
libraries to a common integration group before performing integration testing.
However, you can generate an alternate project definition that deviates from the
default project definition. The alternate project definition defines an intermediate
non-key group for integrating subsets of development groups. Define the non-key
group so that only key groups promote into the non-key group. Developers
authorized to this intermediate group can then promote code to it for unit and
function testing. Testing takes place in this group before promotion to the normal
integration group. Because being at a non-key group does not cause members to be
purged from a key group during a promote, no members are removed from the
default project definition. In this way, you avoid potential integrity problems.

Using this technique, the activities of small groups of integrators do not affect the
normal hierarchy until their testing is complete. By switching to the alternate
project definition, developers can easily test their integration by promoting to the
primary non-key group. When promoting to a non-key group, code still exists in
the normal hierarchy in the development libraries. SCLM promotion from the
development libraries, using the default project definition, would then incorporate
the code into the normal integration group. New code can go through an accurate

STAGE2

USER2

STAGE1

USER1 USER3 USER4

SYSTEST

Figure 6. Example of SCLM Hierarchies

6 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

configuration test before being applied to the normal hierarchy. Code developed
using this scenario is potentially more complete and accurate than code developed
in a normal scenario.

Use Figure 7 and Figure 8 to compare a default hierarchy structure with an
alternate hierarchy structure. Figure 7 shows a default hierarchy structure for a
project. You can perform all normal development activities within the default
hierarchy structure.

Figure 8 shows an alternate hierarchy structure with a primary non-key integration
group for the project shown in Figure 7.

R E LE A S E

TEST

IN T

U SE R 1 USER 2 U SER 3K e y K e y K e y

K e y

K e y

K e y

Figure 7. Default (Primary) Project Hierarchy Structure

Chapter 1. Defining the Project Environment 7

In the example, the developers (USER1, USER2, USER3) can use the alternate
project definition to promote code into the primary non-key group. You cannot
promote up from the primary non-key group, but you can draw down from it.

Promotion to a non-key primary group does not cause deletion of the components
from the respective development libraries. Building in the primary non-key group
allows the developers to integrate and test pieces of code still under development.
Code that is then complete can be promoted through the default project definition
from the development libraries into the normal integration group. The promotion
to the normal integration libraries causes the components to be deleted from the
respective development libraries, but not from the primary non-key group.
Deletion from the primary non-key group must be done manually using the SCLM
Library Utility, the Delete Group Utility or through SCLM services, such as Delete
Group.

Step 2: Identify the Types of Data to Support

This step identifies the types of data required by the applications under
development for your project. Some examples of the types of data used are source
code, object modules, load modules, and source listings. The list of types
developed in this step is used in later steps.

SCLM supports the same kind of data supported by MVS partitioned data sets.
The amount of data is also a factor in determining the types of data needed.
Different types (such as objects and listings) of data should not reside in the same
SCLM type. Determine the number of types you need based on the data you want
to maintain for the project. For example, if you want to maintain compiler listings,
a listing type is necessary. At a minimum, use four types to produce executable
code:
v Source type for application source code
v Object type for generated object code

RELEASE

TEST

INT

USER1 USER2 USER3K ey K ey K ey

K ey

K ey

K ey

DEPT
P r im a ry
Non-Key

Figure 8. Alternate Project Hierarchy Structure with Primary Non-key Integration Group

8 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

v Load type for generated load modules
v Architecture type for architecture definition members.

Similar kinds of data can reside in separate types. For example, you can divide
source code into assembler source code and Pascal source code. To do this, identify
an assembler type and a Pascal type.

Step 3: Establish Authorization Codes

Authorization codes control the movement of data within the hierarchy. The
purpose of this step is to assign authorization codes to the hierarchy. Authorization
codes restrict the draw down and promotion of members to certain groups within
the hierarchy.

At least one authorization code must be defined for a project. If no authorization
codes are defined, SCLM will not permit members to be drawn down or promoted.
Authorization codes work only on editable types such as source, not on build
outputs. Authorization codes are assigned to each group in the hierarchy. Groups
can have any number of authorization codes assigned to them. Members are
assigned authorization codes when they are registered with SCLM. Members can
only exist in groups that have been assigned the same authorization codes as the
members.

It is not necessary to define more than one authorization code for the entire project.
A single authorization code allows each member under SCLM control to be drawn
down to any development group and be promoted to the top of the hierarchy. If
tighter restrictions on the movement of your data are required for your project,
you must identify those situations and define additional authorization codes.

An example of when multiple authorization codes can be used is when an
application has multiple subsystems being developed in different legs of the
hierarchy and you need to ensure that the members of the two subsystems do not
get mixed in the development groups in the hierarchy legs. Authorization codes
can be set up to prevent the members from one subsystem from being drawn
down into the development groups of the other subsystem. This requires at most
two authorization codes. For additional possible uses of authorization codes, see
“Using Authorization Codes to Control SCLM Operations”.

Using the diagram that you drew for Step 1, examine the flow of members and
determine if any restrictions on the movement of members are required. Label each
group with at least one authorization code. Authorization codes can be up to 8
characters and cannot contain commas.

Using Authorization Codes to Control SCLM Operations

Authorization codes restrict promotions and draw downs on a member-by-member
basis for source code only. This section discusses some uses of authorization codes.

First, some facts about authorization codes:
v An authorization code is a character string up to 8 characters and cannot contain

commas.
v When you create the project definition, you assign zero or more authorization

codes to each group.
v Each member of every group within an SCLM-controlled project is assigned one

authorization code.

Chapter 1. Defining the Project Environment 9

v In order to put a member into a group, the authorization code of that member
must match one of the authorization codes that have been assigned to the group.

v When all the authorization codes are removed from a group, no members can be
promoted into or out of that group.

v When you promote a member from one group to the next, the member retains
its authorization code. Thus, the group being promoted into and the group being
promoted from must have a matching authorization code. If, as a result of a
promote, an older version of the module was replaced, the authorization code
assigned to that older version is not kept.

Figure 9 shows a simple hierarchy with four groups: RELEASE, TEST, DEV1 and
DEV2. The group RELEASE has been assigned only one authorization code: DEV.
Group TEST has two authorization codes: DEV and TESTONLY. Three
authorization codes (DEV, PROTO, and TESTONLY) have been assigned to DEV1.
Group DEV2 has DEV and L0 as its authorization codes.

Code this information in the project definition as follows:
RELEASE FLMGROUP KEY=Y,AC=(DEV)
TEST FLMGROUP KEY=Y,AC=(DEV,TESTONLY),PROMOTE=RELEASE
DEV1 FLMGROUP KEY=Y,AC=(DEV,TESTONLY,PROTO),PROMOTE=TEST
DEV2 FLMGROUP KEY=Y,AC=(DEV,L0),PROMOTE=TEST

In Figure 9, the following relationships exist:
v A member in DEV1 with an authorization code of PROTO cannot be promoted

because group TEST does not have PROTO as an authorization code.
v For the same reason, a member in DEV1 with an authorization code of

TESTONLY can be promoted to TEST, but cannot be promoted to RELEASE.
v Similarly, a member in DEV1 or DEV2 with an authorization code of DEV can

be promoted all the way up to group RELEASE.
v A member in DEV2 cannot have an authorization code of TESTONLY or

PROTO; it must be either DEV or L0.
v A member in DEV2 with an authorization code of L0 cannot be promoted

because group TEST does not have L0 as an authorization code.

When you edit a member in a development group, SCLM looks at the
authorization code you specified on the edit panel and tells you the following:

Figure 9. Sample Hierarchy with Authorization Codes

10 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

v If that authorization code is not valid for that development group, you must
enter an authorization code that is assigned to that group. If you enter an
invalid authorization code and then press the help key, SCLM shows
authorization codes for that group.

v If use of that authorization code prevents promotion of that member at some
point in the group hierarchy, SCLM gives you the name of the group into which
promotion is not allowed.

v If use of that authorization code leads to a potential promotion conflict with
another member of the same name, SCLM does not allow the edit. An example
of this problem follows.
SCLM allows you to have two members of the same name and type residing in
two different development groups (such as DEV1 and DEV2 in Figure 9) under
certain conditions. Each of those members has an authorization code assigned to
it. Those codes, along with the authorization codes assigned to the higher
groups in the hierarchy, determine how far up the hierarchy each of those
members can be promoted. If the two promotion paths do not intersect, SCLM
lets you edit those members in those groups. However, if there is at least one
group through which both members can be promoted, changes made to one
member would be lost when the other member is promoted. In that case, SCLM
does not let you edit the members in those groups.
If a member exists in group DEV1, SCLM uses authorization codes to determine
whether or not you can edit a member with the same name and type in group
DEV2:

Table 1. Authorization Code Allowances

Auth. Code for
member in DEV1

Auth. Code for
member in DEV2 Allowed? Why?

DEV DEV No Both members can be promoted
through TEST.

DEV L0 Yes Promotion paths do not
intersect.

PROTO TESTONLY No TESTONLY is not a valid
authorization code for DEV2.

PROTO L0 Yes Promotion paths do not
intersect.

TESTONLY DEV No Both members can be promoted
through TEST.

TESTONLY L0 Yes Promotion paths do not
intersect.

Allowing Parallel Updates

You can use the information in the previous section to set up a project in which
you can make modifications to what you have in production (development) while
being able to make quick fixes to production modules (maintenance). The simple
hierarchy is illustrated in the following example. An actual hierarchy can contain
many groups and layers.

Chapter 1. Defining the Project Environment 11

Define the groups as follows:
PROD FLMGROUP KEY=Y,AC=(FIXED)
DEV FLMGROUP KEY=Y,AC=(BETTER),PROMOTE=PROD
FIX FLMGROUP KEY=Y,AC=(FIXED),PROMOTE=PROD

There are three groups: PROD is the production library, DEV is the development
library, and FIX is the maintenance library. In practice, there would be a much
larger subhierarchy under both DEV and FIX in order to allow for both multiple
developers and for testing of applications before moving them to production.

DEV, FIX, and PROD each have a single authorization code, BETTER, FIXED, and
FIXED respectively, and could have more. More importantly, no authorization code
is assigned to both DEV and PROD. It is this aspect of the project definition that
prevents the promotion of any modules from group DEV into group PROD. When
the development code is ready to move into production, the authorization code
BETTER must be added to the valid authorization codes for the PROD group.

A programmer planning to make changes to a module for the next release of an
application draws the module down from PROD into DEV, specifying an
authorization code of BETTER on the SCLM EDIT-ENTRY PANEL. Changes are
made and tested in DEV.

Suppose that while the module is being changed and tested in the DEV group, a
user encounters a problem with the application and another programmer
determines that the fix requires a change to the module that has been drawn down
to DEV.

The programmer can draw down the module into FIX even though that same
module has been drawn down into DEV. This is possible because the promotion
paths of the two modules do not intersect: the module in DEV cannot be promoted
into PROD because of authorization codes. Therefore, changes made to one module
do not overwrite changes made to the other copy.

When the fix has been made to the module in FIX and the application has been
rebuilt at that group, the user can run the application from group FIX until the fix
has been verified and then promoted to PROD.

Before the fix is promoted, the changes must be incorporated into the copy of the
modules in DEV. This is a manual change made by the current owner of the
modules in DEV with the assistance of the person who made the changes in FIX.

Keep in mind that although authorization codes can be used to restrict promotion
paths, they do not provide security against modifications to SCLM-controlled data
made outside of the SCLM environment. You should use RACF* (or the functional
equivalent) for that purpose.

12 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Step 4: Allocate the PROJDEFS Data Sets

The PROJDEFS data sets are used to store the project definition data for an
individual project. The purpose of this step is to allocate the PROJDEFS data sets.

The PROJDEFS data sets are partitioned data sets with the following naming
convention:
project_id.PROJDEFS.*

Because the project definition is written using S/370 assembler language, SCLM
requires that the load data set be named:
project_id.PROJDEFS.LOAD

When a user invokes SCLM for a specific project, SCLM uses the current
assembled version of the project definition located in the LOAD data set.

The data sets containing the project definition’s source and object code are not
required by SCLM to follow the PROJDEFS naming convention, but it is
recommended to make maintaining the project definition easier. Therefore,
following the naming convention would produce the following data sets:
project_id.PROJDEFS.SOURCE
project_id.PROJDEFS.OBJ

Allocate the PROJDEFS data sets using the attributes defined in Table 3 on page 19.
The PROJDEFS data sets should be protected from access by general users.
Protecting the PROJDEFS data sets is discussed in “Step 7: Protect the Project
Environment” on page 25.

Step 5: Allocate the Project Partitioned Data Sets

The project partitioned data sets are used to store the user application data. These
data sets are organized into a hierarchy and controlled by the project definition.
Allocate the project partitioned data sets using either the ISPF Data Set Utility
(option 3.2) or a JCL process. Use the information in this step to determine the
names, number, and physical characteristics of the project partitioned data sets.

Data Set Naming Conventions

SCLM expects all the project partitioned data sets to use the default naming
convention of project.group.type. Because some projects cannot use the default
naming convention, SCLM allows the project manager to specify an alternate
naming convention either for all the project partitioned data sets or for the project
partitioned data sets associated with individual groups in the hierarchy.

If your data already exists, the existing data sets can be used in conjunction with
SCLM’s flexible data set naming capability. The next section provides additional
information on using this capability.

Flexible Naming of Project Partitioned Data Sets

With SCLM, product managers can use the SCLM-supplied default data set
naming convention or a user-defined naming convention. The default naming
convention is PROJECT.GROUP.TYPE. If the SCLM default naming convention is
not used, the project manager’s convention must use the MVS naming
conventions. For example, it is possible to use four or five qualifiers in the data set

Chapter 1. Defining the Project Environment 13

names instead of the three qualifiers that are used by the SCLM naming
convention. (The PROJDEFS data sets are exceptions; these data sets must use the
naming convention defined in “Step 4: Allocate the PROJDEFS Data Sets” on
page 13.)

To define a naming convention other than SCLM’s default naming convention, you
must specify data set names that correspond to specific groups or the entire
project. While the names of the data sets used by SCLM can use more than three
qualifiers, the developers still see the PROJECT.GROUP.TYPE naming convention
on the SCLM dialog panels and service calls. The project definition creates a
mapping between the PROJECT.GROUP.TYPE name and the user-defined data set
names associated with each group in the hierarchy.

Note: This mapping is only maintained while users are executing SCLM functions.
If ISPF utilities are used on data controlled by SCLM, the users should know
the mapping between the PROJECT.GROUP.TYPE name and the
fully-qualified data set name.

The data set names are defined in the project definition with the FLMCNTRL and
FLMALTC macros. Each macro has a DSNAME parameter that allows the project
manager to specify the data set names for the entire project or for individual
groups. The FLMCNTRL macro defines the data set names for the entire project;
the FLMALTC macro defines the data set names on a group-by-group basis. See
the ISPF Software Configuration and Library Manager (SCLM) Reference for an
example of how to set up the macros to use flexible naming of partitioned data
sets.

The DSNAME parameters on both macros work the same way and can be used
within the same project definition. The value specified on the DSNAME parameter
is a pattern for the data set name. This pattern must meet MVS naming
conventions and can contain the SCLM variables @@FLMPRJ, @@FLMGRP, and
@@FLMTYP. If DSNAME is not specified, SCLM uses the default naming
convention of PROJECT.GROUP.TYPE. The use of variable @@FLMTYP is required.
SCLM verifies that the variable @@FLMTYP is used on each DSNAME parameter
when the project definition is loaded into memory. The variable @@FLMGRP is
very strongly recommended. The use of these variables minimizes the risk that
data set names associated with different groups are the same and prevents data
from being overwritten. The variable @@FLMPRJ is optional.

The SCLM variable @@FLMDSN is created from the value of the DSNAME
parameter. Therefore, if the data set name pattern is
@@FLMPRJ.component_name.@@FLMGRP.@@FLMTYP, the value of @@FLMDSN
will be @@FLMPRJ.component_name.@@FLMGRP.@@FLMTYP.

The versioning partitioned data sets can also use a naming convention other than
SCLM’s default naming convention. The VERPDS parameter on the FLMCNTRL
and FLMALTC macros is used to specify the name of the versioning partitioned
data sets. SCLM uses a default of @@FLMDSN.VERSION for the names of the
versioning data sets. If a pattern other than the default is used, the variables
@@FLMGRP and @@FLMTYP must be part of the data set name pattern. Using

14 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

two variables minimizes the risk that the versioning data set names associated
with different groups are the same, and prevents data from being overwritten.

Attention:

SCLM does not guarantee the uniqueness of the data set names or check the
validity of values entered on the DSNAME parameter.

Number of Data Sets to Allocate

Normally, a data set should be allocated for every possible PROJECT.GROUP.TYPE
combination in the hierarchy. However, if the intent is to develop code in several
hierarchies that merge in one main hierarchy, there might be no need to allocate
some data sets. Allocating only the data sets that are actually used saves time
when creating the hierarchy and minimizes DASD use and catalog entries. See
Figure 10 on page 17 for an example of a hierarchy that does not have all data sets
allocated.

Only those data sets actually used in the hierarchy must be physically allocated.
SCLM functions will execute successfully for hierarchies that contain unallocated
data sets, as long as the unallocated data sets are not used. If a data set is not
allocated and SCLM attempts to use the data set, an error message is issued.

Data sets can be added at any time. If you leave a data set unallocated and later
find you need it, simply allocate the data set then.

Determining When Data Set Allocation Is Necessary: You can leave the data sets
for the intermediate groups in your project unallocated until the first time they are
needed for a promote. You can also leave the data sets for types that will not be
used at a particular group unallocated. As an example, if a developer is responsible
for source code but not panels, then you can leave the data set for the type
containing panels unallocated for his group.

A data set need not be allocated if an EXTEND type is being used and the
hierarchy is designed so that the source code for the EXTEND type is always at a
higher group.

For example, consider a project definition with the FLMTYPE macro written as
follows:
CMNSRC FLMTYPE
BLDSRC FLMTYPE EXTEND=CMNSRC

In this situation, the type CMNSRC can contain members referenced by members
in the BLDSRC type. However, if the source code in CMNSRC will always be at a
higher layer in the hierarchy (for example, IVV), you do not need to allocate data
sets for type CMNSRC below the IVV layer in the main hierarchy.

How SCLM Functions Use Data Sets: SCLM uses a data set when it expects that
the data set already contains a member (for example, when attempting to delete a
member), or when the data set will contain a member (for example, when saving a
new member). The following list details how SCLM functions use a data set:

Chapter 1. Defining the Project Environment 15

Build Uses a data set if it contains a member that has a corresponding
accounting record and that member is being built or referenced by
another member that is being built. Build also uses data sets for
output (those referenced by the LOAD, OBJ, or LIST architecture
keywords, for example).

Promote Uses a data set if it contains a member that has a corresponding
accounting record and that member is being promoted. If these data
sets contain members that need to be promoted, they must be
present in the current group and in the group being promoted to;
otherwise, an error message is issued. If a promotion occurs from a
non-key group to a key group, the corresponding data sets at the
previous key group will also be used.

Delete Uses a data set when deleting a member.

Delete Group Uses a data set when deleting a member.

Library Management
Utility

Uses a data set when deleting a member or when Edit, View or
Build are invoked.

Import Uses a data set when VSAM records are being imported into the
hierarchy. The member imported must exist somewhere in the
hierarchy view for the group being imported into.

Edit Uses a data set when storing or retrieving a member.

View Uses a data set when retrieving a member.

Migrate Uses a data set to retrieve information about a member that is being
migrated into the SCLM hierarchy.

Parse Uses a data set when parsing a member.

Manipulating VSAM Records for Unallocated Data Sets: A build map can be
created for a member that is higher in the hierarchy but for which there is no
source data set allocated for the group where the build is occurring. If you delete a
data set, the corresponding accounting records and build maps can still exist in the
VSAM databases.

Using the following utilities and services, you can browse or delete VSAM records
that correspond to an unallocated data set.

Library Management
Utility

Browse and delete accounting records and build maps that
correspond to an unallocated data set.

Delete Delete accounting records and build maps that correspond to an
unallocated data set.

Delete Group Delete accounting records and build maps that correspond to an
unallocated data set.

Examples of Hierarchies with Unallocated Data Sets: A valid hierarchy that
contains unallocated data sets is shown in Figure 10 on page 17. Member B
INCLUDES member C. A build of member B from group USR1 will succeed,
although a data set was not allocated for Cmnsrc at the INT group. The build will
locate and use member C from the IVV group.

16 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

A hierarchy that is not valid for the intended operation is shown in Figure 11 on
page 18 . A promote of member B from the IVV group, which INCLUDES member
C, will fail, because promote will attempt to copy member C in IVV.Cmnsrc to
REL.Cmnsrc.

Figure 10. Valid Hierarchy with Unallocated Data Sets

Chapter 1. Defining the Project Environment 17

Versioning Partitioned Data Sets

If the versioning capability is going to be used, at least one versioning partitioned
data set must be allocated. If you are going to use the VERCOUNT parameter on
the FLMCNTRL macro to specify that two or more versions be maintained, then
you must specify at least one versioning partitioned data set for each group to be
versioned. Otherwise, errors can occur during version retrieval. You can also
choose to have a versioning partitioned data set associated with each ’group.type’
to be versioned.

The format in Table 2 shows the attributes required for the versioning partitioned
data set. All attributes must be coded as shown, with the exception of the LRECL
value, which defines the minimum LRECL allocation required for versioning. The
LRECL value must be at least 259 and should be 4 bytes more than the LRECL of
the largest source data set to be versioned.

Table 2. Versioning Data Set Attributes

LRECL = 259

RECFM = Variable Blocked (VB)

BLKSIZE = (LRECL * Blocking Factor) + 4 Bytes Use the optimal blocking factor
for your system.

Figure 11. Invalid Hierarchy for Intended Operation

18 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The 4 bytes in the block size calculation are for MVS control information,
specifically for the blocklength field. For example, with a blocking factor of 10 the
block size would be calculated as follows:
(259 x 10) + 4 = 2594

Project Partitioned Data Sets

This section provides guidance on what data set attributes should be used for the
project partitioned data sets. SCLM does not restrict the format of a data set.
However, data sets of the same type must be allocated with the same attributes.
Table 3 shows a list of recommended data set attributes for some typical types. For
best performance, use system determined blocksize (blocksize=0). Load module
data sets should be allocated with a blocksize of 6144 or greater.

Table 3. Data Set Attributes

Type RECFM LRECL

Source FB 80

Object FB 80

Load U 0

Listings VB 137

Linkedit Maps FBM 121

Architecture definitions FB 80

Other Text FB 80

Space Considerations

SCLM has no special considerations that require the allocation of additional space
in the project partitioned data sets. Allocate the size of the project partitioned data
sets according to the amount of data that will be stored in them.

Step 6: Allocate and Create the Control Data Sets

Control data sets are used to track and control application programs within the
hierarchy. SCLM stores accounting and audit information in VSAM data sets
whose names are defined in the project definition. VSAM data sets consist of
VSAM clusters. A VSAM cluster is a named structure consisting of a group of
related components. While it is not required that the first qualifier of VSAM data
sets match the project name, it makes project maintenance easier. There are seven
types of VSAM data sets that can be associated with a project.

Primary Accounting
The accounting data set contains information about the software
components in the project including statistics, dependency information and
build maps (information about the last build of the member). At least one
accounting data set is required for a project.

Secondary Accounting
The secondary accounting data set is a backup of the information in the
accounting data set.

Export Accounting
The export accounting data set contains accounting information that has
been exported from the accounting data set.

Chapter 1. Defining the Project Environment 19

|
|
|
|
|
|

Primary Audit Control
The audit control data set contains audit information about changes to the
software components in the project for groups that have auditing turned
on.

Secondary Audit Control
The secondary audit control data set is a backup of the information in the
audit control data set.

Most projects start out with one VSAM data set, the primary accounting data set.
Additional data sets can be added as the project evolves and more advanced
SCLM capabilities are needed. Additional VSAM data sets are required for Import,
Export, Auditing, automatic backup of accounting data and multiple control data
set support. In some cases, it is desirable to use multiple VSAM data sets instead
of one or two. If this is the case, see “Splitting Project VSAM Data Sets” on page 61
for additional information.

SCLM uses VSAM Record Level Sharing (RLS) to support sharing the VSAM data
sets across systems in a sysplex environment. This support requires:
v the Coupling Facility
v DFSMS 1.3 or later
v a VSAM cluster allocated with the proper characteristics for VSAM RLS
v VSAMRLS=YES specified on the FLMCNTRL macro in the SCLM project

definition.

Refer to the DFSMS documentation for additional information about the hardware
and software requirements to support VSAM RLS.

The VSAM data sets cannot be shared under any other condition. Accessing any of
the VSAM data sets from multiple systems when VSAM RLS is not available can
result in the corruption of data, system errors, or other integrity problems. To
avoid these problems, the project manager must allocate VSAM data sets so that
they cannot be accessed from multiple systems.

All VSAM data sets should be REPROed periodically using the IDCAMS
reproduction utility. This will reduce fragmentation and optimize the performance
of your VSAM data sets.

Create the Accounting Data Sets

The accounting data sets contain information about the application programs in the
hierarchy, including statistics, dependency information, and build maps. SCLM
functions use the accounting information to control and track members in the
project partitioned data sets. Each project must have at least one primary
accounting data set.

An optional secondary accounting data set can be created. The secondary
accounting data set is a backup for the primary accounting data set and allows for
the restoration of accounting information in the case where the primary data set
becomes corrupted. This might happen due to a head crash. A unique name for
this data set must be chosen. The secondary accounting data set should be put on
a different volume than the primary accounting data set. If a secondary data set is
used, the performance of SCLM will be degraded, because updates are made to
both the primary and secondary data sets. The information in both data sets
should be compared periodically to ensure the integrity of the accounting
information.

20 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Both the primary and secondary accounting data sets are created the same way.
Each accounting data set for the project must be a VSAM cluster. Use the IDCAMS
utility to define accounting data sets. If accounting information for different groups
is going to be kept in separate accounting data sets, additional accounting data sets
must be created. An example of the JCL used to define an accounting data set
follows:

Note: This example is called FLM02ACT and is in the data set ISP.SISPSAMP that
is shipped with ISPF. The ISP.SISPSAMP data set also contains a sample for
the allocation of the data set for Record Level Sharing. It is called
FLM02RLS.

//jobname JOB (wkpkg,dpt,bin),'name'
//* code additional JOBCARD statements here
//***
//*
//* THIS JCL EXAMPLE DEFINES A VSAM CLUSTER TO BE USED AS THE SCLM
//* ACCOUNTING FILE FOR A GIVEN PROJECT.
//* THE HIGH-LEVEL QUALIFIER MUST BE AN ENTRY IN A VSAM USER CATALOG
//* IN ORDER TO CREATE THIS CLUSTER.
//* TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER STATEMENT BELOW
//* AS FOLLOWS:
//*
//* 1) ADD THE FOLLOWING LINE OF JCL TO DELETE THE VSAM CLUSTER
//* BEFORE THE ALLOCATION IF THE DATA SET ALREADY EXISTS
//* AND IT NEEDS TO BE DELETED:
//* DELETE 'project.account.file' CLUSTER
//* ADD THIS STATEMENT BETWEEN THE //SYSIN ALLOCATION AND THE
//* DEFINE CLUSTER LINE OF JCL.
//* 2) CHANGE ALL project.account.file TO THE DESIRED FILE NAME.
//* THIS VALUE IS SPECIFIED ON THE FLMCNTRL AND FLMALTC
//* MACROS. IF MORE THAN ONE VSAM ACCOUNTING DATA SET IS
//* SPECIFIED ON THE FLMCNTRL AND FLMALTC MACROS, MULTIPLE
//* IDCAMS DEFINE STEPS ARE REQUIRED.
//* ACCOUNTING DATASET NAMES ARE USUALLY CHOSEN IN THE FOLLOWING
//* MANNER - "PROJECT.ACCOUNT.FILE" (WHICH IS THE DEFAULT
//* USED IN THE PROJECT DEFINITION IF NONE IS SPECIFIED).
//* 3) MODIFY CYLINDERS (PRIMARY SECONDARY)
//* 4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED
//*
//* A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE.
//*
//**
//STEP1 EXEC PGM=IDCAMS
//*
//SYSPRINT DD SYSOUT=H
//*
//SYSIN DD *

DEFINE CLUSTER +
(NAME('project.account.file') +
CYLINDERS(4 1) +
VOLUMES(VVVVVV) +
KEYS(26 0) +
IMBED +
RECORDSIZE(264 32000) +
SHAREOPTIONS(4,3) +
SPEED +

Figure 12. Accounting File Example (Part 1 of 2)

Chapter 1. Defining the Project Environment 21

Space Considerations for the Accounting Data Sets: Each accounting data set
requires approximately three cylinders of 3390 DASD for every 1000 partitioned
data set members that SCLM controls. The space required varies depending on
how much information SCLM will control. If additional space in the data set is
desired, modify the space parameter (shown as CYLINDERS in the example JCL).

Create the Export Data Sets

The export control data sets are optional unless the export and import functions
are used.

Before using the EXPORT service, you must allocate and define an export
accounting data set.

To prepare for the export operation:
1. Define the export accounting data sets to the project using the FLMCNTRL and

FLMALTC macros. Do not use data set names that have already been specified
for any ACCT or ACCT2 parameters in the FLMCNTRL and FLMALTC macros.

Note: SCLM variables, including @@FLMPRJ, @@FLMGRP, and @@FLMUID,
can be used when you specify the name of the accounting VSAM data
sets.

2. Use the EXPACCT parameter on the FLMCNTRL and FLMALTC macros to
specify the name of the export accounting data sets. This example illustrates
how to use this parameter:

FLMCNTRL ACCT=SCLM.ACCOUNT.DATABASE, C
EXPACCT=SCLM.EXPORT.ACCOUNT.DATABASE

SAMPLE FLMALTC ACCT=SCLM.ACCOUNT.SAMPLE, C
EXPACCT=SCLM.EXPORT.ACCOUNT.SAMPLE

SPANNED +
UNIQUE) +
INDEX(NAME('project.account.file.INDEX') -
) +
DATA(NAME('project.account.file.DATA') -
CISZ(2048) +
FREESPACE(50 50) +
)

/*
//***
//*
//* INITIALIZE THE ACCOUNTING FILE
//*
//**
//STEP2 EXEC PGM=IDCAMS
//INPUT DD *

SCLM ACCOUNTING FILE INITIALIZATION RECORD
/*
//OUTPUT DD DSN=project.account.file,DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

REPRO INFILE(INPUT) OUTFILE(OUTPUT)
/*
//*
)CM 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 12. Accounting File Example (Part 2 of 2)

22 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Create the Audit Control Data Sets

The audit control data sets contain information about changes to SCLM-controlled
members that are located in groups being audited. The audit control data sets are
only required if the audit function is used. You must create the audit control data
sets before the audit function is enabled. If auditing is used, each project must
have at least one primary audit control data set.

You can create an optional secondary audit control data set. The secondary audit
control data set is a backup for the primary audit control data set. It allows you to
restore audit control information if the primary audit control data set is corrupted.
Choose a unique name for this data set and put it on a different volume than the
primary audit control data set. If a secondary data set is used, SCLM’s
performance will be degraded because updates are made to both the primary and
secondary audit control data sets. The information in both data sets should be
compared periodically to ensure the integrity of the audit control information.

Use the IDCAMS utility to define audit control data sets. Each audit control data
set for the project must be a VSAM cluster. If audit control information for
different groups will be kept in separate audit control data sets, you must create
additional audit control data sets. The following JCL example defines audit control
data sets.

Note: This example JCL is called FLM02VER and is in data set ISP.SISPSAMP that
is shipped with SCLM.

Chapter 1. Defining the Project Environment 23

//jobname JOB (wkpkg,dpt,bin),'name'
//* code additional JOBCARD statements here
//***
//*
//* THIS JCL EXAMPLE DEFINES A VSAM CLUSTER TO BE USED AS THE
//* AUDIT CONTROL DATA SET FOR A GIVEN PROJECT.
//* THE HIGH LEVEL QUALIFIER MUST BE AN ENTRY IN A VSAM CATALOG
//* IN ORDER TO CREATE THIS CLUSTER.
//* TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER STATEMENT BELOW
//* AS FOLLOWS:
//*
//* 1) ADD THE FOLLOWING LINE OF JCL TO DELETE THE VSAM CLUSTER
//* BEFORE THE ALLOCATION IF THE DATA SET ALREADY EXISTS
//* AND IT NEEDS TO BE DELETED:
//* DELETE 'project.version.file' CLUSTER
//* ADD THIS STATEMENT BETWEEN THE //SYSIN ALLOCATION AND THE
//* DEFINE CLUSTER LINE OF JCL.
//* 2) CHANGE ALL project.version.file TO THE DESIRED FILE NAME.
//* THIS VALUE IS SPECIFIED ON THE FLMCNTRL AND FLMALTC
//* MACROS. IF MORE THAN ONE VSAM ACCOUNTING DATA SET IS
//* SPECIFIED ON THE FLMCNTRL AND FLMALTC MACROS, MULTIPLE
//* IDCAMS DEFINE STEPS ARE REQUIRED.
//* 3) MODIFY CYLINDERS (PRIMARY SECONDARY)
//* 4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED
//*
//* A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE.
//*
//**
//STEP1 EXEC PGM=IDCAMS
//*
//SYSPRINT DD SYSOUT=H
//*
//SYSIN DD *

DEFINE CLUSTER +
(NAME('project.version.file') +
CYLINDERS(4 1) +
VOLUMES(VVVVVV) +
KEYS(40 0) +
IMBED +
RECORDSIZE(264 32000) +
SHAREOPTIONS(4,3) +
SPEED +
SPANNED +
UNIQUE) +
INDEX(NAME('project.version.file.INDEX') -

Figure 13. Audit Control Data Set Example (Part 1 of 2)

24 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Space Considerations for the Audit Data Sets: Each audit data set requires
approximately one cylinder of 3390 DASD for every 100 partitioned data set
members that SCLM controls. The space required varies depending on how much
information SCLM will control. If you require additional space in the data set,
modify the space parameter (shown as CYLINDERS in the example JCL).

Step 7: Protect the Project Environment

SCLM provides a controlled environment to maintain and track all software
components. However, SCLM is not a security system. You must rely on RACF or
an equivalent security system to provide complete environment security. Consider
limiting authority to data sets in the hierarchy above the development layer.

The following sections describe the security requirements for the different types of
data in the SCLM environment. Use this information to set up the security for the
project environment. When this step is complete, the security requirements for the
project environment are complete.

PROJDEFS Data Sets

The project definition LOAD data set should be restricted so that only the project
manager has UPDATE authority to it. All other developers need READ access to
this data set. Developers have no need to update the remaining PROJDEFS data
sets and should not have UPDATE access to those data sets. READ access can be
given to the other PROJDEFS data sets if this is reasonable for the project.

Project Partitioned Data Sets
v Each developer needs READ authority to all the project partitioned data sets.
v Each developer needs UPDATE authority to the development group(s) that the

individual uses to change SCLM-controlled members. UPDATE authority is also
required for any groups the developer is allowed to promote into.

v If the SCLM versioning capability is used, each developer needs UPDATE
authority to the versioning partitioned data sets.

) +
DATA(NAME('project.version.file.DATA') -
CISZ(2048) +
FREESPACE(50 50) +
)

/*
//***
//*
//* INITIALIZE THE AUDIT CONTROL FILE
//*
//**
//STEP2 EXEC PGM=IDCAMS
//INPUT DD *

SCLM AUDIT CONTROL FILE INITIALIZATION RECORD
/*
//OUTPUT DD DSN=project.version.file,DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

REPRO INFILE(INPUT) OUTFILE(OUTPUT)
/*
//*
)CM 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 13. Audit Control Data Set Example (Part 2 of 2)

Chapter 1. Defining the Project Environment 25

v If the import/export capability is enabled, each developer needs UPDATE
authority to the export data sets.

v We suggest that the project manager have ALTER authority to all the project
partitioned data sets.

Control Data Sets
v Each developer in the project needs UPDATE authority to the control data sets

that are updated by the developers.
v Each developer needs READ access to the primary and secondary (if used)

accounting data sets for all groups in the hierarchy. This authorization is
required for SCLM to perform its verification.

v If cross-reference data sets are used in the project, each developer needs READ
access to the cross-reference data sets for all groups.

v If the auditing capability is used, each developer needs UPDATE authority to
the audit control data sets.

For more information on RACF, refer to MVS Resource Access Control Facility
(RACF) Command Language Reference, SC28-0733.

Step 8: Create the Project Definition

The project definition defines the development environment for an individual
project. The project definition is organized into three parts: the hierarchy definition,
project controls, and language definitions.
v The hierarchy definition determines the structure of the hierarchy and how data

moves through the hierarchy.
v Project controls define how SCLM operates for the project.
v The language definitions define the languages for the project.

When creating a project definition, it is usually easier to copy a sample project
definition and make the necessary project-specific modifications. IBM supplies two
sample project definitions with SCLM located in the data set ISP.SISPSAMP. The
sample project definitions are named FLM@EXM1, FLM@EXM2 and FLMWBPRJ.
FLM@EXM1 is an example project definition that uses several languages, such as
COBOL, PL/I, and Script. FLM@EXM2 is an example project definition that shows
several languages using Cross System Product, DB2, and IMS support. The
FLMWBPRJ project definition example includes languages that are used to build an
application on your workstation using SCLM’s workstation build capability.
Another example project definition (shown on page 41, but not delivered with
SCLM) is used throughout this chapter as a reference in explaining how to
generate the project definition.

Copy the project definition that is appropriate for your project, FLM@EXM1,
FLM@EXM2 or FLMWBPRJ into your project.PROJDEFS.SOURCE data set. All
project definitions and language definitions for your project should reside in your
project.PROJDEFS.SOURCE data set.

Each part of the project definition uses SCLM macros to define the data so that
SCLM understands it. The flexibility of these macros allows you to customize each
project definition for specific purposes. ISPF Software Configuration and Library
Manager (SCLM) Reference describes the use of these macros in detail.

26 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Note: Because these are S/370 Assembler language macros, all rules pertaining to
macros apply. In addition, there are some SCLM rules involving the use of
the macros.

Alternate Project Definitions

You can generate more than one project definition for a project. Each project
definition defines the relationships between groups in the project database and the
processes that you can perform on the data in the project database. Each project
definition can define a different database structure, specify different control
options, or support different languages for the project.

Limit the use of alternate project definitions to satisfying a temporary need for a
capability that the default (primary) project definition does not provide. You can
use alternate project definitions successfully if they are never used to introduce or
update members controlled under the primary project definition. Thus, you could
use an alternate project definition to export data from the database definition or
reference data in the primary database definition. However, if you use an alternate
project definition to restrict an SCLM verification capability for data that is
intended for the primary project definition, you can introduce integrity problems.

You can have an unlimited number of alternate project definitions for a project.

Figure 14 on page 28 shows an alternate project definition with a primary non-key
integration group (DEPT) defined for the project database structure shown in
Figure 7 on page 7.

Chapter 1. Defining the Project Environment 27

Create the Hierachy Definition

This step discusses the hierarchy definition. When this step is complete, the
hierarchy definition of the project definition is complete.

The hierarchy definition defines the project’s hierarchy using groups and types.
The rules for moving data within the hierarchy are defined with authorization
codes. This information was created in Steps 1, 2, and 3. Modify the example
project definition using the following macros and the information from Steps 1, 2,
and 3 to define the hierarchy.

The macros that are used in the hierarchy definition are shown in the order that
they are usually used in the project definition.

PROJ1 FLMABEG
*
*
* TYPE SPECIFICATION
*
ARCHDEF FLMTYPE
DESIGN FLMTYPE
LIST FLMTYPE
LOAD FLMTYPE
OBJ FLMTYPE
SOURCE FLMTYPE
*
*
* GROUP SPECIFICATION, DEFINE THE AUTHORIZATION CODES
*
RELEASE FLMGROUP AC=(REL),KEY=Y
TEST FLMGROUP AC=(REL),KEY=Y,PROMOTE=RELEASE
INT FLMGROUP AC=(REL),KEY=Y,PROMOTE=TEST
DEPT FLMGROUP AC=(REL),KEY=N,PROMOTE=INT
USER1 FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT
USER2 FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT
USER3 FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT
*
*
* PROJECT CONTROLS
*

FLMCNTRL ACCT=PROJ1.ACCOUNT.FILE, C
MAXLINE=75

*
*
* LANGUAGE DEFINITIONS
*

COPY FLM@ARCD -- ARCHITECTURE LANGUAGE --
COPY FLM@TEXT -- TEXT LANGUAGE --
COPY FLM@SCRP -- SCRIPT 3 LANGUAGE --
COPY FLM@ASM -- 370 ASSEMBLER LANGUAGE --
COPY FLM@COBL -- COBOL LANGUAGE --
COPY FLM@FORT -- FORTRAN IV LANGUAGE --
COPY FLM@PSCL -- PASCAL LANGUAGE --
COPY FLM@PLIO -- PL/I OPTIMIZER LANGUAGE --
COPY FLM@L370 -- 370 LINKAGE EDITOR --

*
FLMAEND

Figure 14. Sample Alternate Project Definition

28 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Specify the Project Name with FLMABEG: This macro defines the project name.
It is required and must be the first macro in the project definition. You can use it
only once. The project name must match the first qualifier of the PROJDEFS.LOAD
data set.

If you want more than one project definition for a project, keep the project name in
the alternate project definitions the same. See “Alternate Project Definitions” on
page 27 for more information. In the example on page 41, the FLMABEG macro
defines project PROJ1.

Define Authorization Groups with FLMAGRP: Use this macro to define a set (or
group) of authorization codes. This macro is optional and needed only if you are
defining a large number of authorization codes. You can use it multiple times.

The FLMAGRP provides a way of using an identifier to represent a list of
authorization codes. If you decide to use multiple authorization codes for any of
the groups in your hierarchy, it might be easier to associate an identifier with the
list. If the list needs to be changed at a later date, the changes can be made on the
FLMAGRP macros rather than changing the authorization code lists on all the
FLMGROUP macros. The FLMAGRP macro must appear before any reference to
the authorization group that it defines. The example on page 41 uses only one
authorization code and therefore does not need to use FLMAGRP macros.

Define Types with FLMTYPE: Use this macro to define one type in the project
hierarchy. At least one occurrence of this macro is required. You can use it multiple
times.

Define the types identified in Step 2: Identify the Types of Data to Support using
the FLMTYPE macro. For example, in the sample project definition depicted on
page 41, type ARCHDEF is defined to contain architecture members.

Define Groups with FLMGROUP: Use this macro to define one group in the
project hierarchy. At least one occurrence of this macro is required. You can use it
multiple times.

Define the groups identified in Step 1: Determine the Project’s Hierarchy by using
the FLMGROUP macro. Each group in the hierarchy requires an FLMGROUP
statement.

The authorization codes defined in Step 3: Establish Authorization Codes must also
be defined now. Use the AC parameter on the FLMGROUP macro to define the
authorization codes listed in Step 3: Establish Authorization Codes. The example
on page 41 shows a project definition with only one authorization code defined.

End the Definition with FLMAEND: This signifies the end of the project
definition. It must be the last macro in the project definition and is required. You
can use it only one time.

Set the Project Control Options

The project control options dictate SCLM processing for an individual project.
When this step is complete, the project controls of the project definition will be set
up for the new project. Use project control options to specify:
v Primary accounting data set
v Secondary accounting data set
v Export accounting data set

Chapter 1. Defining the Project Environment 29

v Audit control data set
v VSAM Record Level Sharing
v Versioning partitioned data set
v Project partitioned data set naming conventions
v Maximum lines per page
v Number of versions to keep
v Translator option override
v SCLM temporary data set allocation
v Change code verification routine
v Build and promote user exit routine

The following macros that can be used in the control section of the project
definition are shown in the order that they are usually used in the project
definition:

FLMCNTRL Use this macro to specify project-specific control options. The
options on FLMCNTRL apply to the entire project. This macro is
optional unless you change any of SCLM’s default control options.
You can use it one time.

FLMALTC Use this macro to provide alternate control for individual groups.
This macro is used to override certain options on the FLMCNTRL
macro for specific groups. The options on the FLMALTC macro
apply only to the groups using it. This macro is optional. You can
use it multiple times.

FLMATVER Use this macro to enable the audit and version capability and to
define the type of data, (audit or audit and versioning, to capture
with the capability. If a project is using the versioning capability, it
must also use the audit capability. This macro is optional. You can
use it multiple times.

Primary Accounting Data Set Specification: The ACCT control option specifies
the name of the primary accounting data set. The data set you specify must be the
name of the VSAM cluster you want to use. The default accounting cluster name is
project.ACCOUNT.FILE, where project is the 8-character name for the project.

In the example of a project definition on page 41, the primary accounting data set
name is PROJ1.ACCT.FILE.

Secondary Accounting Data Set Specification: The ACCT2 control option
specifies the name of a backup VSAM accounting data set for the project. If a
severe problem occurs with the primary accounting data set (for example, a head
crash on that disk), you could use this data set as a backup to restore the primary
accounting information.

If you use this option, additional VSAM updates to the secondary accounting data
set take place and can affect SCLM’s performance.

Export Accounting Data Set Specification: The EXPACCT control option specifies
the name of the export accounting data set. The data set you specify must be the
name of the VSAM cluster you want to use. The following variables can be used in
specifying the name of the export accounting data set name:

v @@FLMPRJ
v @@FLMGRP
v @@FLMUID

30 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The EXPACCT control option must have a data set name that is different from the
ACCT or ACCT2 control option specified in FLMCNTRL or any FLMALTC macro.

The example project definition found on page 41 does not specify an export
accounting data set.

Audit Control Data Sets Specification: The audit control data sets are optional.
They only need to be specified if SCLM’s auditing capability will be used. The
VERS and VERS2 control options are used to specify the audit control data sets
created in “Step 6: Allocate and Create the Control Data Sets” on page 19. The
VERS control option specifies the primary audit control data set. The VERS2
control option specifies the secondary audit control data set that is a backup for
the primary audit control data set. When using the auditing capability, the
secondary audit control data set is optional. The FLMALTC macro can be used to
specify different audit control data sets on specific groups.

VSAM Record Level Sharing (RLS): The VSAMRLS control option indicates
whether or not VSAM Record Level Sharing should be used when the level of
DFSMS on the system is 1.3 or later. The default value is NO. The example found
in this chapter does not use VSAM Record Level Sharing.

Versioning Partitioned Data Sets Specification: Specifying the names of
versioning partitioned data sets is optional. The VERPDS control option allows you
to specify the names of partitioned data sets that will contain the versioned data
for a project. If the names of the versioning partitioned data sets will be different
for specific groups, the FLMALTC macro must be used to associate the names of
the versioning partitioned data sets with the specific groups. The following
variables can be used in specifying the name of the versioning partitioned data set
name:

v @@FLMPRJ
v @@FLMGRP
v @@FLMTYP
v @@FLMDSN

Project Partitioned Data Set Naming Conventions: The DSNAME control option
is used to specify a naming convention other than the SCLM default for the project
partitioned data sets. The DSNAME option allows the project manager to specify
the naming convention for all the data sets in the hierarchy. If the naming
convention of the project partitioned data sets will be different for specific groups
then the FLMALTC macro must be used so the naming convention for the data
sets associated with the specific groups will be changed. For more information on
modifying the naming convention for project partitioned data sets see “Flexible
Naming of Project Partitioned Data Sets” on page 13.

Maximum Lines Per Page: Use the MAXLINE control option to specify the
maximum lines per page for all SCLM-generated reports. The default is 60. The
minimum number of lines per page is 35. In the example project definition on page
41, the maximum number of lines per page defaults to 60.

Number of Versions to Keep: Use the VERCOUNT parameter to specify how
many versions of a member to keep. The default value of zero, used in the
example found in this chapter, indicates that all versions are kept. Valid values are
0 and any integer value greater than or equal to 2. Because that is what is already
in the hierarchy, 1 is not a valid value. If you specify a value other than the default
and you intend to version multiple groups in the hierarchy, either use the
FLMALTC macro to specify different VERPDS data sets for each group or use the

Chapter 1. Defining the Project Environment 31

@@FLMGRP variable in the VERPDS name on the FLMALTC macro. Failure to
allocate and specify unique VERPDS data sets can result in difficulty retrieving
versions.

Translator Option Override: The OPTOVER control option allows you to keep
developers from overriding project-defined translator options. If you specify Y,
developers can override the translator options for any of the languages by using
the PARM statement in the architecture members. For additional information on
translator options, see Part One of this book.

If you specify N, SCLM uses only translator options you specify in the language
definition for the translators. Specifying N also overrides the OPTFLAG parameter,
which allows option override by the translator. The default for the OPTOVER
control option is Y. In the example project definition on page 41, the OPTOVER
option defaults to Y.

SCLM Temporary Data Set Allocations: Many installations specify one or more
I/O unit names as Virtual Input Output (VIO) devices at system generation time.
Use of these devices typically improves system performance by eliminating much
of the overhead and time required to move data physically between main storage
and an I/O device.

To take advantage of this facility, specify the name of the VIO unit in your project
definition as the VIOUNIT parameter on the FLMCNTRL macro. This unit will be
used for all temporary data sets under the following conditions:
v IOTYPE = O, P, S, or W
v CATLG = N
v RECNUM <= the MAXVIO parameter.

Some of the temporary data sets used by versioning will use the VIO unit as well
as long as the size of the temporary data set to be allocated is less than or equal to
the MAXVIO value.

Temporary data set allocations that fail to meet any of the preceding conditions
will be allocated using the unit specified via the DASDUNIT parameter on the
FLMCNTRL macro.

The default value for MAXVIO is 5000, and the maximum allowable value is
2147483647. A relatively large value should be specified in order to ensure that
SCLM temporary data sets are allocated using the VIO unit. If SCLM functions fail
for lack of memory (S80A ABEND or S878 ABENDs), try reducing this value.

The size of the temporary data sets allocated for translators is determined by the
attributes specified on the FLMALLOC macros in the language definition. The size
of the temporary data sets used by versioning is based on the attributes of the
source data set being versioned.

Change Code Verification Routine Specification: This control option allows you
to specify a change code verification routine to be used for the project. If you
specify the routine, SCLM calls it to verify the change codes entered when a
developer makes an update to a member. SCLM calls the change code verification
routine when the SCLM editor, the migration and import utilities, and the migrate,
import, save and store services are invoked.

32 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

There can be performance implications associated with the specification of a
change code verification routine based on how the user uses the exit.

SCLM does not provide a default change code verification routine. However, you
can specify your own change code verification routine in the project definition
using the VERCC parameter on the FLMCNTRL macro.

The following sections explain how to create a change code verification routine.

Change Code Verification Routine Requirements: To validate member updates
for a project against a project-defined set of criteria, you can supply a
user-generated verification routine to SCLM. If you supply this routine to SCLM,
the SCLM editor, the migration and import utilities, and the migrate, import, save
and store services use it. Users can update the change codes by specifying them in
the service calls, on the Edit panel, or through the SPROF command line during
edit. The change codes for a member can be viewed or deleted using the Library
Utility. The following paragraphs describe requirements you must follow when
designing this routine.

SCLM passes a string of seven parameters separated by commas to the verification
routine. Register 1 contains the address of the input data. The first halfword of the
input data is the length of the input string. Immediately following the halfword
length is the input parameter string. The return code from the routine is the only
parameter passed back. The return code is returned in register 15. SCLM saves
members only if it receives a return code of 0 from the verification routine. SCLM
informs you if it detects a non-zero return code.

When SCLM invokes the change code verification routine just prior to the edit,
SCLM ignores non-zero return codes and allows the edit to begin. If the change
code verification routine does not have all the information it needs, the verification
routine should return a return code of 8, and the change code verification routine
will be invoked again when the member is processed. When a verification routine
fails during a save, you have two options:
v You can use the CREATE edit command to make a non-SCLM controlled copy of

the editing session and then use the migrate utility to bring the member back
under SCLM control.

v You can use SPROF from SCLM Edit to change/add the change code.

A project can use any combination of the parameters to determine the validity of
change codes entered. The format and description of parameters SCLM passes to
the verification routine are as follows:

Table 4. Verification Routine Parameters

OPTION LIST Up to 255-character (including delimiters) parameters specified on the
FLMCNTRL macro using the macro parameter VERCCOP. Delimit this
string so that the SCLM parameters that follow can be identified by the
verification routine.

GROUP The 8-character name of the group in which the member is being created
or modified (capitalized, left-justified, blank-padded).

TYPE The 8-character name of the member type being created or modified
(capitalized, left-justified, blank-padded).

MEMBER The 8-character name of the member that is being created or modified
(capitalized, left-justified, blank-padded).

Chapter 1. Defining the Project Environment 33

Table 4. Verification Routine Parameters (continued)

LANGUAGE The 8-character name of the language specified for the member
(capitalized, left-justified, blank-padded).

USERID The 8-character user ID of the developer performing the modification
(capitalized, left-justified, blank-padded).

AUTHCODE The 8-character authorization code for the member (capitalized,
left-justified, blank-padded).

CHANGE CODE The 8-character change code that has been entered (capitalized,
left-justified, blank-padded).

The verification routine can be complicated or simple. You can use a problem
report/change request (PR/CR) tracking system to track changes to the
application, or you can just maintain valid PR/CR values in a data set that you
can access for verification. You should link any routine you produce using linkage
editor options RENT and REUS to make the routines reentrant and the invocation
as efficient as possible. You can write the verification routine in any language. Use
the standard IBM 370 linkage convention.

If the verification routine needs accounting information in addition to the
parameters passed by SCLM, include the SCLM internal data access that the
DBACCT or ACCTINFO services provide.

Verify and Save Change Code Exit Routine Specification: These control options
allow you to specify verify or save change code exit routines, or both, to be used
for the project. They are intended for use in place of a change code verification
routine. These routines differ from the change code verification exit in the
following ways:
v There are two exits. The verify change code exit routine is invoked at Edit

verification and SPROF processing. It is invoked during SPROF processing when
either the language or the change code has changed.
The save change code exit routine is invoked during SAVE. This includes Edit
save processing, the Migrate Utility, and the STORE, SAVE, and MIGRATE
services.

v A non-zero return code from the exit routine stops processing immediately.
v A blank change code is acceptable. The exits can be used for other purposes.

If you specify a change code verification exit and a verify or save change code exit
routine (or both), then the change code verification exit routine is invoked fist. The
verify or save change code exit routine is only invoked if the change code
verification completes successfully. The exception is during SPROF processing
where the verify change code exit routine is called without first invoking the
change code verification exit routine when only the language has changed.

There can be performance implications associated with the specification of a verify
or save change code exit routine depending on the processing performed by the
exit routine.

SCLM does not provide default verify or save change code exit routines. However,
you can specify your own verify change code exit routine in the project definition
using the CCVFY parameter on the FLMCNTRL macro. A save change code exit
routine is specified using the CCSAVE parameter.

The following sections explain how to create a verify or save change code exit
routine.

34 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|

|
|
|
|
|

|
|
|

|
|
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

Verify and Save Change Code Exit Routine Requirements: To validate member
updates for a project against a project-defined set of criteria, you can supply
user-generated verify and/or save change code exit routines to SCLM.

SCLM passes a string of seven parameters separated by commas to the exit
routines. Register 1 contains the address of the input data. The first halfword of the
input data is the length of the input string. Immediately following the halfword
length is the input parameter string. The return code from the routine is the only
parameter passed back. The return code is returned in Register 15. SCLM allows a
member to be edited or saved only if it receives a return code of 0 from the exit
routine. SCLM informs you if it detects a non-zero return code.

A project can use any combination of the parameters to determine whether or not
an update should be permitted. The format and description of parameters SCLM
passes to the verification routine are as follows:

Table 5. Initial and Save Change Code Exit Routine Parameters

OPTION LIST Up to 255-character (including delimiters) parameters specified on the
FLMCNTRL macro using the CCVFYOP for options to the verify change
code exit routine and CCSAVOP for those passed to the save change
code exit routine. Delimit this string so that the SCLM parameters that
follow can be identified by the exit routine.

GROUP The 8-character name of the group in which the member is being created
or modified (capitalized, left-justified, blank-padded).

TYPE The 8-character name of the member type being created or modified
(capitalized, left-justified, blank-padded).

MEMBER The 8-character name of the member that is being created or modified
(capitalized, left-justified, blank-padded).

LANGUAGE The 8-character name of the language specified for the member
(capitalized, left-justified, blank-padded).

USERID The 8-character user ID of the developer performing the modification
(capitalized, left-justified, blank-padded).

AUTHCODE The 8-character authorization code for the member (capitalized,
left-justified, blank-padded).

CHANGE CODE The 8-character change code that has been entered (capitalized,
left-justified, blank-padded).

The exit routines can be complicated or simple. You should link any routine you
produce using linkage editor options RENT and REUS to make the routines
reentrant and the invocation as efficient as possible. You can write the exit routines
in any language. Use the standard IBM 370 linkage convention.

Change Code Verification Routine Example: The following example shows a simple
program written in Pascal to perform minimal verification. This routine verifies
that the change code of SCLM was entered. A return code of 0 indicates that the
change code is valid. A return code of 8 indicates that the change code failed
verification. The example assumes that the option list is empty.

The example calls the Pascal PARMS function to retrieve the string of input
parameters. The example calls the Pascal RETCODE procedure to pass the
verification routine return code to SCLM in register 15. The Pascal PARMS function
and the RETCODE procedure follow the IBM 370 subroutine linkage convention.

Chapter 1. Defining the Project Environment 35

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

||
|
|
|
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

|
|
|
|

Build and Promote User Exit Routine Specification: The user exit options allow
you to specify build and promote user exits to provide additional functions not
supplied with SCLM. SCLM does not provide user exit routines. If you do not
want any user exit routines for your project, you can skip the user exit

PROGRAM EXITCCV;
(***)
(* Change Code Verification User Exit *)
(***)
(* Inputs: *)
(* PARMS - *)
(* option list - Options list (if specified on FLMCNTRL). *)
(* group - Group where the change is being made. *)
(* ,type - Type containing the member being changed. *)
(* ,member - Member being changed. *)
(* ,language - Language of member being changed. *)
(* ,userid - User ID performing the change. *)
(* ,authcode - Authorization code of the member. *)
(* ,change code - Change code being used for the change. *)
(***)
(* Outputs: *)
(* return_code - Return code in register 15. *)
(* 0 - Change code is valid. *)
(* 8 - Change code is invalid. *)
(***)
(* Process: *)
(* This program verifies that a change code of 'SCLM' has been *)
(* entered. *)
(***)

VAR
comma_index : INTEGER;
i : INTEGER;
input_data : STRING(320);
return_code : INTEGER;

BEGIN (* program EXITCCV *)

(* Initialize the variables. *)
input_data := PARMS;
return_code := 0;

(* Parse until you get the change code. *)
FOR

i := 1 to 6
DO

BEGIN
comma_index := INDEX(input_data,',');
input_data := SUBSTR(input_data,comma_index+1);

END; (*FOR*)

(* If the change code is not equal to 'SCLM', signal an error. *)
IF TRIM(input_data) <> 'SCLM'
THEN

BEGIN
return_code := 8;

END; (*IF*)

(* Set the return code. *)
RETCODE(return_code);

END. (* EXITCCV *)

36 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

specifications. The user exits can perform logging functions, additional verification,
or coordinated processing with non-SCLM tools. One user exit can be specified for
build and three for promote. SCLM invokes the build user exit at the end of the
build. SCLM invokes the promote verification user exit, the promote copy user
exit, and the promote purge user exit routines at the end of promote verification,
copy, and purge phases, respectively. Build and promote user exits are defined to
the project definition using the BLDEXT1, PRMEXT1, PRMEXT2, and PRMEXT3
parameters on the FLMCNTRL macro.

User Exit Routine Requirements: If you specify a user exit option parameter, SCLM
passes it to the user exit routine, followed by a string of 10 parameters separated
by commas. The address of this input data is contained at the address stored in
register 1. The first halfword of the input data is the number of characters
comprising the input data string. Immediately following this halfword length is the
input parameter string itself.

The user exit routine must pass back a return code value to SCLM in register 15. A
return code of zero is considered to be successful and processing continues.
Non-zero return code values from user exit routines are handled in the following
ways:
v Both the build user exit (BLDEXT1) and the promote purge phase user exit

(PRMEXT3) can return any positive integer value and normal processing
continues.

v The processing that occurs after the promote verification phase user exit
(PRMEXT1) has been invoked depends on the promote mode in effect. In
conditional mode, any non-zero return code causes promote processing to stop.
In unconditional mode, any return greater than zero but less than 20 allows
promote processing to continue.

v The processing that occurs after the promote copy phase user exit (PRMEXT2)
has been invoked depends only on the return code value returned. Any return
code greater than zero but less than 20 allows normal promote processing to
continue. A negative return code or a return code greater than or equal to 20
causes promote processing to terminate regardless of the specified promote
mode.

The format and description of the parameters passed from SCLM through all user
exits are:

Table 6. User Exit Parameters

OPTION LIST Up to 255 characters (including delimiters) (blank-padding is not
performed for this parameter). Parameter is specified in the FLMCNTRL
macro using macro parameters BEXT1OP, PEXT1OP, PEXT2OP, and
PEXT3OP. Delimit this string so that the SCLM parameters that follow
can be identified by the user exit routine.

‘xxxxxxxx’ An 8-character literal value indicating the exit type (capitalized,
left-justified, blank-padded). Valid types are:

BUILD Build (BLDEXT1)

PVERIFY
Promote verification (PRMEXT1)

PCOPY
Promote copy (PRMEXT2)

PPURGE
Promote purge (PRMEXT3).

Chapter 1. Defining the Project Environment 37

Table 6. User Exit Parameters (continued)

PROJECT The 8-character name of the project (capitalized, left-justified,
blank-padded).

LIBDEF The 8-character name of the project definition (capitalized, left-justified,
blank-padded).

USERID The 8-character value of the user’s logon ID (capitalized, left-justified,
blank-padded).

FROM GROUP The 8-character name of the group (capitalized, left-justified,
blank-padded). The group is the “from group” for the promote and the
“build group” for the build.

TYPE The 8-character name of the type (capitalized, left-justified,
blank-padded).

MEMBER The 8-character name of the member (capitalized, left-justified,
blank-padded).

SCOPE The 8-character name of the scope (capitalized, left-justified,
blank-padded). Valid scopes are as follows:

Build scope Limited, normal, subunit, extended.

Promote scope Normal, subunit, extended.

MODE The 13-character name of the mode (capitalized, left-justified,
blank-padded). Valid modes are as follows:

Build mode Forced, conditional, unconditional, and report only.

Promote mode Conditional, unconditional, and report.

TO GROUP The 8-character name of the group (capitalized, left-justified,
blank-padded). The group is the “to-group” for the promote exit
routines. This parameter is blank for the build exit routine.

A user exit routine can be complicated or simple. One purpose of a user exit
routine is to track changes to an application. The SCLM outputs can be copied and
maintained in a data set that you can access for reports. The passed parameters
can be used to maintain a time log of SCLM builds and promotes. You should
link-edit all user exit routines with the options RENT and REUS to make the
routines reentrant and, therefore, the invocation as efficient as possible. You can
write a user exit routine in any language.

If you need accounting information in addition to the input parameters passed by
SCLM, application program access to SCLM internal data is available using the
DBACCT service.

Build allocates the following ddnames for internal use:
v BLDEXIT
v BLDLIST
v BLDMSGS
v BLDREPT

Promote allocates the following ddnames for internal use:
v COPYERR
v PROMEXIT
v PROMMSGS
v PROMREPT

38 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

||
|
|

||
|
|

Use of these names in user exit routines can cause conflicts.

At the end of an exit routine, free only those ddnames explicitly allocated by the
exit routine.

Build and Promote User Exit Output Data Sets: If you a build or promote exit
routine, SCLM generates a sequential data set containing a record for each member
changed or verified by build or promote. Verified members are those eligible for
promotion during the promote verification phase. Changed members for build are
those members produced due to translator calls. Changed members for promote
are those members copied or purged. SCLM puts new data in the data set for the
invocation of each exit. User exit routines can use the output data set when called,
but the data set is rewritten for later exits and is deleted when the SCLM processor
ends.

The data definition names (ddnames) for build and promote exit output data sets
are BLDEXIT and PROMEXIT respectively. The attributes of the output data sets
are the same for all the exit routines:

RECFM FB

BLOCK SIZE 3200

LRECL 160

The format of the data set is the same for every exit. The data set contains three
8-character fields and one 16-character status field. A blank separates all fields. The
following list defines the fields generated for every exit routine:

Table 7. User Exit Output Data Set Format

GROUP Specifies the 8-character name of the group beginning in column 1.

TYPE Specifies the 8-character name of the type beginning in column 10.

MEMBER Specifies the 8-character name of the member beginning in column 19.

STATUS Specifies the status beginning in column 28.

BUILT Indicates if the member was built. This field is written by
BLDEXT1.

PROMOTABLE/NOT PROMOTABLE
Indicates if the member is eligible for promotion. This field is
written by PRMEXT1.

COPY SUCCESSFUL/COPY FAILED
Indicates if the member was copied. This field is written by
PRMEXT2.

PURGE SUCCESSFUL/PURGE FAILED
Indicates if the member was purged. This field is written by
PRMEXT3.

The following example shows build user exit output:
USER1 TYPE1 MEMBER1 BUILT
USER1 TYPE MEM1 BUILT
USER1 TYPE2 MEMBER5 BUILT

User Exit Routine Example: An example program written in Pascal to perform
minimal user exit activity follows. This routine writes the passed parameters to the
data set PROMOUT1, copies the user exit output data set contents to the
PROMOUT1 data set, and passes a return code of zero (0) to SCLM.

Chapter 1. Defining the Project Environment 39

The program calls the Pascal PARMS function to retrieve the string of input
parameters. It calls the Pascal RETCODE procedure to pass the verification routine
return code to SCLM in register 15. The Pascal PARMS function and RETCODE
procedure assume the IBM S/370 subroutine linkage convention.

PROGRAM EXIT001;
(***)
(* Promote User Exit *)
(***)
(* Inputs: *)
(* PARMS - *)
(* option list - Options specified in FLMCNTRL macro. *)
(* exit type - PVERIFY, PCOPY, or PPURGE literal. *)
(* ,project - Name of the project. *)
(* ,libdef - Name of the project definition. *)
(* ,userid - User ID performing the promote. *)
(* ,group - Group the member is being promoted from. *)
(* ,type - Type the member is being promoted from. *)
(* ,member - The member being promoted. *)
(* ,scope - NORMAL, SUBUNIT, or EXTENDED literal. *)
(* ,mode - CONDITIONAL, UNCONDITIONAL, or REPORT. *)
(* ,group - Group the member is being promoted to. *)
(* *)
(* PROMEXIT - Promote user exit output data set. *)
(* *)
(***)
(* Output: *)
(* PROMOUT1 - Output text file contains promote log *)
(* info for this promote phase. *)
(* *)
(* return_code - Return code in register 15. *)
(* 0 - Successful. *)
(***)
(* Process: *)
(* This program saves the contents of the PROMEXIT file. *)
(***)
VAR

out_file : TEXT;
in_file : TEXT;
parm_string : STRING(100);
line : STRING(52);

BEGIN (* program EXIT001 *)

(* Open the file for write *)
REWRITE(out_file,'DDNAME=PROMOUT1');

(* Open the file for read *)
RESET(in_file,'DDNAME=PROMEXIT');

(* Retrieve input parameters and write them to the output file *)
parm_string := PARMS;

40 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Example Project Definition: Figure 15 shows an example of a project definition.
The source for this example can be found in the ISPF sample library,
ISP.SISPSAMP, member FLM@EXM1.

WRITELN(out_file,'User exit 1 entered.');
WRITELN(out_file,'Parms=',TRIM(parm_string));
WHILE NOT EOF(in_file) DO

BEGIN
READLN(in_file, line);
WRITELN(out_file,line);

END;

(* Close both files and set the program return code *)
CLOSE(out_file);
CLOSE(in_file);
RETCODE(0);

END.

TITLE '*** PROJECT DEFINITION FOR PROJECT=PROJ1 ***'
PROJ1 FLMABEG
*
* **
* * DEFINE THE AUTHORIZATION CODES *
* **
GRP1 FLMAGRP AC=(A1,B1,C1)
GRP2 FLMAGRP AC=(A2,B2,C2)
GRPALL FLMAGRP AC=(GRP1,GRP2)
*
* **
* * DEFINE THE TYPES *
* **
*
ARCHDEF FLMTYPE EXTEND=SOURCE
COMP FLMTYPE
DICT FLMTYPE
DOCS FLMTYPE
LINKLIST FLMTYPE
LIST FLMTYPE
LMAP FLMTYPE
LOAD FLMTYPE
OBJ FLMTYPE
OBJ1 FLMTYPE
OBJ2 FLMTYPE
SCRIPT FLMTYPE EXTEND=SOURCE
SOURCE FLMTYPE
*

Figure 15. Example Project Definition (Part 1 of 3)

Chapter 1. Defining the Project Environment 41

* **
* * DEFINE THE GROUPS *
* **
*
DEV1 FLMGROUP AC=(GRP1),KEY=Y,PROMOTE=TEST
DEV2 FLMGROUP AC=(GRP2),KEY=Y,PROMOTE=TEST
TEST FLMGROUP AC=(GRP1),KEY=Y,PROMOTE=RELEASE
RELEASE FLMGROUP AC=(GRPALL),KEY=Y,ALTC=RELDB
*
**
* PROJECT CONTROLS
**
*

FLMCNTRL ACCT=PROJ1.ACCT.FILE, C
VERS=PROJ1.VER1.FILE, C
VERS2=PROJ1.VER2.FILE, C
MAXVIO=999999, C
VIOUNIT=VIO

*
RELDB FLMALTC ACCT=PROJ1.ACCT.FILEX, C

VERS=PROJ1.VER1.FILEX, C
VERS2=PROJ1.VER2.FILEX

*
**
* VERSIONING AND AUDITABILITY *
**
*
*

FLMATVER GROUP=TEST, C
TYPE=SOURCE, C
VERSION=YES

*
FLMATVER GROUP=RELEASE, C

TYPE=SOURCE, C
VERSION=YES

* LANGUAGE DEFINITION TABLES
**
*
*
**
* NON-COMPILERS
**
*

COPY FLM@ARCD -- ARCHITECTURE DEF. LANGUAGE --
COPY FLM@CLST -- CLIST LANGUAGE --
COPY FLM@REXX -- REXX LANGUAGE --
COPY FLM@REXC -- REXX PARSER AND COMPILER --
COPY FLM@TEXT -- TEXT LANGUAGE --
COPY FLM@SCRP -- SCRIPT 3 LANGUAGE --
COPY FLM@BOOK -- SCRIPT/BOOKMASTER LANGUAGE --

*

* REXX PARSERS WITH STANDARD COMPILERS

*

COPY FLM@RASM -- 370 ASSEMBLER H LANGUAGE --
COPY FLM@RC37 -- 370 C LANGUAGE --
COPY FLM@RCBL -- COBOL II LANGUAGE --

*

Figure 15. Example Project Definition (Part 2 of 3)

42 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Define the Language Definitions

Language Definitions define the languages and translators that a project uses.
SCLM functions invoke translators (such as compilers, parsers, and linkage editors)
based on a member’s language. The language definition defines the translators
used by each language. Each language can have multiple translators defined for it.
The translators can be IBM program products, independent program products, or
user-written translators.

IBM provides examples of language definitions for many commonly used
languages such as COBOL and PL/I.

**
* STANDARD COMPILERS USING SYSTEM MACRO LIBRARIES
**
*
COBOL FLMSYSLB SYS1.EXAMPLE.MACROS

COPY FLM@ASM -- 370 ASSEMBLER LANGUAGE --
COPY FLM@ASMH -- 370 ASSEMBLER H LANGUAGE --
COPY FLM@C370 -- 370 C LANGUAGE --
COPY FLM@CPLK -- 370 C + PRE-LINK LANGUAGE --
COPY FLM@CLNK -- 370 C PRE-LINK/LINK-EDIT --
COPY FLM@COBL -- COBOL LANGUAGE --
COPY FLM@COB2 -- COBOL II LANGUAGE --
COPY FLM@FORT -- FORTRAN IV LANGUAGE --
COPY FLM@HLAS -- HIGH LEVEL ASSEM. LANGUAGE --
COPY FLM@PSCL -- PASCAL LANGUAGE --
COPY FLM@PLIC -- PL/I CHECKOUT LANGUAGE --
COPY FLM@PLIO -- PL/I OPTIMIZER LANGUAGE --

*

* LANGUAGE DEFINITIONS TO SUPPORT OBJ AND LOAD WITHOUT SOURCE

*

COPY FLM@OBJ -- DUMMY LANG DEF TO MIGRATE OBJ --
COPY FLM@COPY -- COPY OBJ TO OUTPUT TYPE --

*

* STANDARD COMPILERS USING SYSTEM COMPOOL LIBRARIES

*
JOV FLMCMPLB SYS1.EXAMPLE.COMPOOLS

COPY FLM@JOV -- JOVIAL (J73) LANGUAGE --
COPY FLM@JOVC -- JOVIAL COMPOOL LANGUAGE --

*

* LINKAGE EDITORS *

*

COPY FLM@L370 -- 370 LINKAGE EDITOR --

*
**
*

FLMAEND
*
* 5665-402 (C) COPYRIGHT IBM CORP 1992, 1990

Figure 15. Example Project Definition (Part 3 of 3)

Chapter 1. Defining the Project Environment 43

Table 8. Language Definitions Supplied with SCLM

Compilers and Linkage Editors Language Definitions

Architecture definition FLM@ARCD (noncompiler)

BookMaster FLM@BOOK (noncompiler)

CICS map groups FLM@BMS

CLIST FLM@CLST (noncompiler)

COBOL OS/VS FLM@COBL

COBOL OS with CICS preprocessing FLM@CCOB

COBOL OS with DB2 preprocessing FLM@2COB

COBOL OS with DB2 and CICS
preprocessing

FLM@ECOB

COBOL II FLM@COB2

COBOL II with CICS preprocessing FLM@CICS

COBOL II with DB2 preprocessing FLM@2CO2

COBOL II with DB2 and CICS preprocessing FLM@ECO2

COBOL II with member expansion and CICS
preprocessing

FLM@ICO2

COBOL FLM@RCBL (COBOL parser written in
REXX)

CSP/370AD 4.1 See Table 20 on page 300

C/C++ for MVS FLM@RCIS (C/C++ parser written in REXX)

C/370 FLM@C370, FLM@RC37 (C/370 parser
written in REXX)

C/370 with CICS preprocessing FLM@CC

C/370 with DB2 preprocessing FLM@2C

C/370 with DB2 and CICS preprocessing FLM@EC

C/370 with member expansion and CICS
preprocessing

FLM@IC

C/370 with pre-link FLM@CPLK

C/370 pre-link with link-edit FLM@CLNK

DB2 See Table 33 on page 339

DB2 Bind/Free for CSP/370AD 4.1 See Table 21 on page 301

FORTRAN IV FLM@FORT

FORTRAN IV with DB2 preprocessing FLM@2FRT

IMS MFS See Table 22 on page 301

JOVIAL FLM@JOV FLM@JOVC

Object language definition to migrate object
modules into SCLM as outputs (non-editable)

FLM@COPY

Object/Load dummy language definition to
migrate object and load into SCLM as inputs
(editable)

FLM@OBJ

Pascal FLM@PSCL

PL/I Checkout Compiler FLM@PLIC

PL/I Optimizer with DB2 preprocessing FLM@2PLO

44 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

||
|

||

||
|

Table 8. Language Definitions Supplied with SCLM (continued)

Compilers and Linkage Editors Language Definitions

PL/I Optimizing Compiler FLM@PLIO

PL/I Optimizer with CICS preprocessing FLM@CPLO

PL/I Optimizer with DB2 and CICS
preprocessing

FLM@EPLO

PL/I Optimizer with member expansion and
CICS preprocessing

FLM@IPLO

REXX FLM@REXX (noncompiler) FLM@REXC
(compiler)

Language Parsers written in REXX FLM@RASM (Assembler), FLM@RCBL
(COBOL), FLM@RC37 (C/370), FLM@RCIS
(C/C++ for MVS)

SCRIPT 3 FLM@SCRP (noncompiler)

S/370 Assembler FLM@ASM

S/370 Assembler with DB2 preprocessing FLM@2ASM

S/370 Assembler F with CICS preprocessing FLM@ASMC

S/370 Assembler F with DB2 and CICS
preprocessing

FLM@EASM

S/370 Assembler with member and CICS
preprocessing

FLM@IASM

S/370 Assembler H FLM@ASMH, FLM@RASM (Assembler
parser written in REXX)

S/370 High Level Assembler FLM@HLAS

S/370 Linkage Editor FLM@L370

TEXT FLM@TEXT (noncompiler)

All the example language definitions are located in the data set ISP.SISPMACS that
is shipped with SCLM.

The ISPF Sample and Macro libraries contain a number of files to support SCLM
workstation builds. The ISPF Sample Library contains the following:
v FLMWBMIG - Sample migration EXEC for IBM CSET++ for OS/2 “Hello World

6” sample
v FLMWBUSR - Sample USERINFO file
v FLMWBAIO - Sample ACTINFO file for IBM CSET++ for OS/2 “Hello World 6”

sample
v FLMWBAIW - Sample ACTINFO file for Borland (TM) C++ “Hello World”

sample
v FLMWBAIX - Sample ACTINFO file for IBM CSET++ for AIX
v FLMWBTMP - Sample workstation language definition template
v FLMWBOS2 - High-level architecture definition to build IBM CSET++ for OS/2

“Hello World 6” sample
v FLMWBIPF - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” help file
v FLMWBDLL - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” DLL file

Chapter 1. Defining the Project Environment 45

||
|
|

||
|

||

v FLMWBEXE - Architecture definition to build IBM CSET++ for OS/2 “Hello
World 6” EXE file

v FLMWBWIN - High-level architecture definition to build Borland C++ “Hello
World” sample

The Macro Library contains sample language definitions for OS/2 and Windows.
The IBM CSET++ for OS/2 language definitions are:
v FLM@WICC - Compile
v FLM@WDUM - Compile dummy object to hold DLLs
v FLM@WEXE - Link EXE
v FLM@WIPF - Build Help
v FLM@WLNK - Link386 to Link the DLL
v FLM@WRC - Resource compile

The Borland (TM) C++ for Windows language definitions are:
v FLM@WBCC - Compile
v FLM@WBRC - Resource Compile
v FLM@WTLK - TLINK OBJ to EXE

The IBM CSET++ for AIX sample language definitions is:
v FLM@WXLC - Compile

This step describes how to define language definitions to the project definition.
When this step is complete, all the languages your project will use will be defined.

To define the language definitions:
1. Determine what languages are used in your project.
2. Copy the appropriate example language definitions to the

project.PROJDEFS.SOURCE data set allocated in “Step 4: Allocate the
PROJDEFS Data Sets” on page 13.

3. Modify the language definitions.
If you do not find an example language definition that meets your project
requirements, you can write a new language definition. For instructions on
defining a new language to SCLM, see “Defining a New Language to SCLM”
on page 94.

Refer to the ISPF Software Configuration and Library Manager (SCLM) Reference for
details on the use of each SCLM macro.

Modifying Example Language Definitions: Use the following macros to modify
language definitions for specific project requirements.

Table 9. SCLM Macros for Language Definition

FLMSYSLB Use this macro to define data sets that contain system, project, or
language dependencies that are referenced by SCLM members but are
not in the SCLM hierarchy themselves. Examples are system macros for
Assembler programs and compiler-supplied include files for C
programs.

FLMCMPLB Provided for compatibility with previous releases.

FLMLANGL Use this macro to define the language to SCLM.

46 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 9. SCLM Macros for Language Definition (continued)

FLMTRNSL Use this macro to define a translator for a language. It can be used
multiple times for a language.

FLMTOPTS Use this macro to vary the options passed to a build translator based on
the group where the build is taking place. Options can be appended to
the existing options or replace the options completely.

FLMTOPTS macros must follow an FLMTRNSL macro with
FUNCTN=BUILD.

FLMTCOND Use this macro to specify conditional execution of a BUILD translator.
Part of the specification can include examination of return codes from
previous BUILD translators in the language definition.

FLMALLOC Use this macro for each data set allocation required by a translator. If
you are using a ddname substitution list, specify an FLMALLOC macro
for each ddname in the correct order. If not, determine the ddnames that
are needed by the translator and specify an FLMALLOC macro for each
ddname.

FLMCPYLB Use this macro to identify data sets to be concatenated to a ddname. The
data sets must be preallocated. The FLMCPYLB data sets are used as
input to the Parse and other translators.

FLMINCLS Use this macro to associate sets of includes found during the parse of a
member with the types in the project definition that contain those
includes. FLMALLOC macros then reference this macro to allocate the
include libraries for build translators. The FLMINCLS macro can be used
multiple times for each language, but each FLMINCLS macro must have
a unique name within the language and be associated with at least one
FLMALLOC macro. This helps ensure that the includes that are found
by build are the same ones found by the translators.

For each language, take the following actions as necessary:
v Specify data sets containing dependencies that are not to be tracked, such as

assembler system macros (macro FLMSYSLB).
v Specify the maximum number of includes, change codes, user data records,

compilation units, and external dependencies expected in a source member
(macro FLMLANGL; keyword BUFSIZE).

v Determine if ddname substitution is needed for the translator. This information
can be found in the translator documentation. Adjust the PORDER parameter on
the FLMTRNSL macro as needed.

v Verify translator load module names and load data sets for accuracy (macro
FLMTRNSL; keywords COMPILE, DSNAME, and TASKLIB).

v Adjust translator return codes to project requirements if nonzero return codes
are acceptable (macro FLMTRNSL; keyword GOODRC).

v Update default translator options (macro FLMTRNSL; keyword OPTIONS).
v Verify translator version information (macro FLMTRNSL; keyword VERSION).
v Specify output listings (macro FLMALLOC; keyword PRINT).
v Specify output default types (macro FLMALLOC; keyword DFLTTYP) to match

the FLMTYPE type specified in the project definition.
v Verify that system libraries are being allocated for build translators. Either

specify ALCSYSLB=Y on the FLMLANGL macro or ensure that the data sets
from FLMSYSLB macros are specified on FLMCPYLB macros following
IOTYPE=I allocations.

v Specify the include sets for the language to use. You must specify all the
include-sets returned by the parser for the language. If you add a new

Chapter 1. Defining the Project Environment 47

FLMINCLS macro, ensure that it is referenced by at least one FLMALLOC of a
build translator. If you remove an FLMINCLS macro, update any FLMALLOC
macros that reference it, ensuring that no member’s accounting data contains
references to that include set.

Figure 16 on page 48 provides an example of an OS/VS COBOL language
definition.

In the example in Figure 16, the COBOL language is defined to SCLM by the
FLMLANGL macro. The FLMTRNSL parameters specify particular information
about the compiler:

**
*
* OS/VS COBOL LANGUAGE DEFINITION FOR SCLM
**
*

FLMLANGL LANG=COBOL,VERSION=COBLV1.0,ALCSYSLB=Y C
TSLINL=80, C
TSSEQP='S 1 6 S 73 80'

*
* PARSER TRANSLATOR
*

FLMTRNSL CALLNAM='SCLM COBOL PARSE', C
FUNCTN=PARSE, C
COMPILE=FLMLPCBL, C
PORDER=1, C
OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

*
* BUILD TRANSLATOR(S)
*
* --COBOL INTERFACE--

FLMTRNSL CALLNAM='COBOL', C
FUNCTN=BUILD, C
COMPILE=IKFCBL00, C
VERSION=1.0, C
GOODRC=0, C
PORDER=1, C
OPTIONS=(DMA,PRI,SIZE=512K,APOS,CNT=77,BUF=30K,OPT,XREF)

*
* DDNAME ALLOCATIONS
*
FLMALLOC IOTYPE=O,DDNAME=SYSLIN,KEYREF=OBJ,RECNUM=5000,DFLTTYP=OBJ
FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC
FLMALLOC IOTYPE=S,DDNAME=SYSIN,KEYREF=SINC,RECNUM=2000
FLMALLOC IOTYPE=W,DDNAME=SYSUT1,RECNUM=5000
FLMALLOC IOTYPE=W,DDNAME=SYSUT2,RECNUM=5000
FLMALLOC IOTYPE=W,DDNAME=SYSUT3,RECNUM=5000
FLMALLOC IOTYPE=W,DDNAME=SYSUT4,RECNUM=5000
FLMALLOC IOTYPE=A,DDNAME=SYSUT5
FLMCPYLB NULLFILE

FLMALLOC IOTYPE=A,DDNAME=SYSUT6
FLMCPYLB NULLFILE

FLMALLOC IOTYPE=A,DDNAME=SYSTERM
FLMCPYLB NULLFILE

FLMALLOC IOTYPE=A,DDNAME=SYSPUNCH
FLMCPYLB NULLFILE

FLMALLOC IOTYPE=O,DDNAME=SYSPRINT,KEYREF=LIST,RECFM=FBA,LRECL=133, C
RECNUM=5000,PRINT=Y,DFLTTYP=LIST

Figure 16. OS/VS COBOL Language Definition Example

48 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

v The name of the compiler: COBOL.
v The name of the compiler load module: IKFCBL00.
v The version of the compiler: 1.0.
v The compiler options: DMA, PRI, SIZE=512K, APOS, CNT=77, BUF=30K, OPT,

XREF

The FLMALLOC macros following the build FLMTRNSL macro specify each
ddname needed by the COBOL compiler. SCLM allocates the ddnames specified on
the FLMALLOC macro before invoking the translator (in this example, the COBOL
IKFCBL00 load module). The FLMALLOC parameters allow specification of the
record format (RECFM), the logical record length (LRECL), the number of records
(RECNUM), and other options. An FLMCPYLB macro specifies that a ddname be
associated with a null data set.

The language definitions must be defined to the project definition, either by
placing the language definitions directly into the project definition or having the
language definitions copied into the project definition when the project definition is
assembled. It is easier to maintain the project definition if each language definition
is kept in a separate member and copied into the project definition when the
project definition is assembled. The example project definition on page 41 uses this
method of including the language definitions.

Step 9: Assemble and Link the Project Definition

Assemble all project definitions with the SCLM macro set using the standard IBM
S/370 Assembler. Once assembled, link the object code using the standard IBM
S/370 linkage editor and store the load module into the project.PROJDEFS.LOAD
data set. All project definitions must reside in the project.PROJDEFS.LOAD data set
to allow SCLM to be invoked correctly. SCLM accesses the project definition’s load
module when SCLM is invoked. If the project definition is updated, reassembled,
and relinked while the current load module is being used, the active invocation of
SCLM will not be affected.

Make sure all project definition load modules are reentrant. Nonreentrant project
definition load modules can cause error conditions. Specify the RENT option
during link edit. The load module name of the default project definition for a
project must match the project identifier specified on the FLMABEG macro.
Alternate project definitions can have any load module name, but all alternate
project definitions must have the same project identifier, specified on the
FLMABEG macro, as the default project definition.

The SCLM macro set performs some verification of the project definition during
assembly. When warning or error conditions are detected, the macros issue
MNOTES, which are SCLM-specific diagnostic comments. The MNOTES produced
by SCLM are listed in ISPF Messages and Codes. If the text of an MNOTE is missing,
verify that the FLMABEG macro appears at the top of the project definition and is
referenced correctly. The return code from the assembler indicates the following:

0 The SCLM macros detected no errors.

4 The SCLM macros detected a potential error. The project definition might
be valid, but might not reflect the desired options. Review the assembler
listing for details.

8 The SCLM macros detected errors. Do not use the project definition until
you correct the errors identified in the assembler listing.

Chapter 1. Defining the Project Environment 49

Other The assembler detected errors. Examine the assembler listing for the error
messages and consult the assembler’s user guide for additional
information. Do not use the project definition until you correct the errors
identified in the assembler listing.

Assemble and Link Example

The following example illustrates JCL that assembles and links a project definition.
This example can be found in member FLM02PRJ in the data set ISP.SISPSAMP
that is shipped with SCLM.

Project Manager Scenario

This section describes the steps required to define and install an SCLM project. By
completing the steps outlined in the following sections, the project manager can
create a project that is under SCLM control. The sample project can also be defined
using the SCLM sample project utility (Option 10.7). Once the project has been
created, it can be used as a model for building other SCLM projects.

The project manager must perform all the steps described in this chapter before
developers can follow the programmer scenario described in Part One of this book.

//jobname JOB (wkpkg,dpt,bin),'name'
//* code additional JOBCARD statements here
//*
//ASMPROJ PROC PROJID=,PROJDEF=
//*--*
//* ASSEMBLE AND LINK A PROJECT DEFINITION *
//* *
//* PROC PARAMETERS: *
//* *
//* PROJID - HIGH-LEVEL QUALIFIER FOR PROJECT *
//* PROJDEF - PROJECT DEFINITION MEMBER NAME *
//* *
//* NOTE: MODIFY SYSLIB DSNAMES TO GET THE SCLM RELEASE MACROS *
//* AND ANY LANGUAGE DEFINITIONS YOU NEED. *
//*--*
//ASM EXEC PGM=IEV90,REGION=400K,PARM=OBJECT
//SYSLIB DD DSN=&PROJID;.PROJDEFS.SOURCE,DISP=SHR
// DD DSN=ISP.SISPMACS,DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSPUNCH DD DUMMY
//SYSIN DD DSN=&PROJID;.PROJDEFS.SOURCE(&PROJDEF),DISP=SHR
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(2,2))
//SYSLIN DD DSN=&&INT,DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,0)),
// DCB=(BLKSIZE=400)
//*--*
//LINK EXEC PGM=IEWL,PARM='RENT,LIST,MAP',REGION=512K
//SYSPRINT DD SYSOUT=H
//SYSLIN DD DSN=&&INT,DISP=(OLD,DELETE)
//OBJECT DD DSN=&PROJID;.PROJDEFS.OBJ,DISP=SHR
//SYSLIB DD DSN=&PROJID;.PROJDEFS.LOAD,DISP=SHR
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(2,2)),DISP=NEW
//SYSLMOD DD DISP=SHR,DSN=&PROJID;.PROJDEFS.LOAD(&PROJDEF)
//SYSGO DD DISP=SHR,DSN=&PROJID;.PROJDEFS.OBJ(&PROJDEF)
// PEND
//*--*
//ASMLINK EXEC PROC=ASMPROJ,PROJID=SCLM,PROJDEF=SCLM
//

50 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Prerequisites for Defining an SCLM Project

Before beginning the project definition phase of this activity, you must have the
following software, space, and tools available:
v OS/390 V2R8.0 ISPF with SCLM installed on an MVS system.
v PL/I Optimizing Compiler IEL0AA Version 4.0 or equivalent. (Optional if

defining the project with the SCLM sample project utility.)
v Disk space to contain the data sets for the project. The project requires 265 tracks

on 3390 DASD.
v Access to data set ISP.SISPSAMP.

This data set is available as part of the ISPF product. It contains the project
definition for this scenario and other examples. Check with the person at your
site who installs ISPF to find out the name of this data set and how to allocate it.
The member FLM01PRJ in this data set is the definition for the sample project
definition used for this scenario.

v Access to data set ISP.SISPMACS.
This macro library is shipped with the ISPF product and contains the macros
used to assemble the project definition.

v ISPF knowledge at the user level (edit and utilities are used).
v VSAM installed.
v Rudimentary VSAM knowledge. (Not required if defining the project with the

SCLM Sample Project utility.

Example Project Overview

This SCLM project contains all the required components of SCLM projects in
general and serves as a model for future projects. A description of the components
of the project follows.

Figure 17 shows three layers in the SCLM project hierarchy: development, test, and
release.
v The development layer promotes to the test layer, and the test layer promotes to

the release layer.
v The development layer is composed of the groups DEV1 and DEV2. You can

think of these groups as being assigned to two separate developers. The SCLM
hierarchy looks like Figure 17.

Figure 18 on page 52 shows six modules in the hierarchy: FLM01MD1, FLM01MD2,
FLM01MD3, FLM01MD4, FLM01MD5, and FLM01MD6. These are the programs
that the developers edit in order to install fixes and new features.

Figure 17. Example Project Hierarchy

Chapter 1. Defining the Project Environment 51

v FLM01MD2 is written in PL/I and uses the PL/I optimization compiler.

Note: Module FLM01MD2 and the language definition for the PLI Optimizing
Compiler are not included if the project is defined using the SCLM
sample project utility.

v The other five modules are written in S/370 Assembler. They include a member
named FLM01EQU that contains the register equates commonly used in
assembly language programs.

v The modules are compiled or assembled by the BUILD function into an
application named FLM01AP1. SCLM performs this operation using the
architecture definitions contained in the ARCHDEF data sets.

v FLM01AP1 does not directly call any language translators. It references other
architecture members. The Build process creates the load modules FLM01LD1,
FLM01LD2, FLM01LD3, and FLM01LD4.

Note: Load module FLM01LD2 is not created if the project is defined using the
SCLM sample project utility.

v FLM01AP1, FLM01SB1, and FLM01SB2 are high-level architecture members.
They do not call any language translators. FLM01LD1, FLM01LD2, FLM01LD3,
and FLM01LD4 are LEC architecture members. FLM01CMD is a CC architecture
member, and FLM01ARH is an architecture member that is directly copied into
FLM01LD3 and FLM01LD4.

Note: Architecture member FLM01LD2 is not included if the project is defined
using the SCLM sample project utility.

Figure 18. Example Project Architecture

52 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Note: Source module FLM01MD2 and architecture member and load module
FLM01LD2 are not included if the project was defined using the SCLM
sample project utility (Option 10.7).

Preparing the Example Project Hierarchy

Use the following steps to install the example project data sets on your system.
Follow the steps in the order listed and exactly as they are described. When you
have completed all of the steps, you will have an SCLM project database with
which you can experiment to better understand how SCLM works. If you
encounter any errors during the following steps, use the TSO, ISPF, and SCLM
messages to correct the problem. You can also define the sample project using the
SCLM Sample Project utility (Option 10.7).

In the descriptions that follow, the default naming convention
(PROJECT.GROUP.TYPE) is used. Assume for these examples that the project name
is PROJ1. If you use a different name, be sure to inform those users who plan to
complete the programmer scenario.

1. Sign on to TSO.
2. At the Ready prompt, start ISPF.
3. Using the ISPF Data Set Utility, allocate the following partitioned data set with

space in blocks (10,50), with 10 directory blocks, and with record format FB,
LRECL 80:

PROJ1.PROJDEFS.SOURCE

This partitioned data set will contain the source code for the library structure
as defined in the project definition.

4. Using the ISPF Data Set Utility, allocate the following partitioned data set with
space in blocks (10,50), with 10 directory blocks, and with record format FB,
LRECL 80:

PROJ1.PROJDEFS.OBJ

This partitioned data set will contain the object code for the library structure
as defined in the project definition.

5. Using the ISPF Data Set Utility, allocate the following partitioned data set with
space in blocks (10,50), with 10 directory blocks, and with record format U,
LRECL 0, BLKSIZE 6144:

PROJ1.PROJDEFS.LOAD

This partitioned data set will contain the load module for the library structure
as defined in the project definition. This member is named PROJ1.

The existence of the PROJ1.PROJDEFS.LOAD data set has informed the
system that PROJ1 is a valid SCLM-controlled project. After this step, you
might receive the following message from the ISPF editor when editing data
sets that have PROJ1 as the high-level qualifier:
–CAUTION– THE MEMBER BEING EDITED BELONGS TO AN SCLM-CONTROLLED

PROJECT. REFER TO THE ISPF EDIT TUTORIAL FOR FURTHER DETAILS.

This message tells you that these data sets are under SCLM control and that
you should use the SCLM editor instead of the ISPF editor.

Chapter 1. Defining the Project Environment 53

|
|
|

|

|
|

Note: Depending on the ISPF configuration for your site, you might receive
warning or error messages when attempting to edit an SCLM project
using the ISPF editor.

6. Use the ISPF Move/Copy Utility to copy the following members from
ISP.SISPSAMP into PROJ1.PROJDEFS.SOURCE: FLM01ASM, FLM01PLI,
FLM01PRJ, FLM01SCR, FLM01370, FLM02ALL, and FLM02VSM.

7. Member FLM02ALL of PROJ1.PROJDEFS.SOURCE is a background job that
allocates all of the data sets needed for this example application. You must
provide a job card and change any other information that is specific to your
location; for example, change all the occurrences of USERID to PROJ1 and
alter the job card. After you have made these changes, submit the job.
If this job allocates all the required data sets, you can skip to Step 9. Use the
ISPF Data Set List Utility to determine whether or not the data sets were
allocated.
If the required data sets have not been allocated, you can allocate them by
following Step 8.

8. If Step 7 fails, or if you choose not to use the FLM02ALL JCL member, follow
these steps to allocate the required data sets.
a. Using the ISPF Data Set Utility, allocate the following partitioned data sets

with space in blocks (10,50), with 10 directory blocks, and with record
format FB, LRECL 80:

PROJ1.DEV1.SOURCE
PROJ1.DEV2.SOURCE
PROJ1.TEST.SOURCE
PROJ1.RELEASE.SOURCE

These partitioned data sets will contain the source code for the project.
b. Using the ISPF Data Set Utility, allocate the following partitioned data sets

with space in blocks (10,50), with 10 directory blocks, and with record
format FB, LRECL 80:

PROJ1.DEV1.ARCHDEF
PROJ1.DEV2.ARCHDEF
PROJ1.TEST.ARCHDEF
PROJ1.RELEASE.ARCHDEF

These partitioned data sets will contain the architecture definition for the
project.

c. Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (30,100), with 10 directory blocks, and with record
format VB, LRECL 137:

PROJ1.DEV1.SOURCLST
PROJ1.DEV2.SOURCLST
PROJ1.TEST.SOURCLST
PROJ1.RELEASE.SOURCLST

These partitioned data sets will contain the listings from the compilations
and assemblies of the modules.

d. Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (15,50), with 10 directory blocks, and with record
format FB, LRECL 80:

PROJ1.DEV1.OBJ
PROJ1.DEV2.OBJ
PROJ1.TEST.OBJ
PROJ1.RELEASE.OBJ

54 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

These partitioned data sets will contain the object code from the
compilations and assemblies of the modules.

e. Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (7,13), with 10 directory blocks, and with record
format U,LRECL 0, BLKSIZE 6144:

PROJ1.DEV1.LOAD
PROJ1.DEV2.LOAD
PROJ1.TEST.LOAD
PROJ1.RELEASE.LOAD

These partitioned data sets will contain the load modules from the link
edits of the modules.

f. Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (5,20), with 10 directory blocks, and with record
format FB, LRECL 121:

PROJ1.DEV1.LMAP
PROJ1.DEV2.LMAP
PROJ1.TEST.LMAP
PROJ1.RELEASE.LMAP

These partitioned data sets will contain the load maps from the link edits
of the modules.

9. Using the ISPF Library Utility, rename member FLM01PRJ in
PROJ1.PROJDEFS.SOURCE to PROJ1. This member contains the source code
for the project definition for PROJ1.

10. Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(PROJ1). Change all
occurrences of USERID to PROJ1.

11. Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(FLM01ASM). Change all
system macro library references to the library of macros at your location.
You must change the members FLM01PLI, FLM01SCR, and FLM01370 so that
libraries, assemblers, and assembler options match the libraries and products
in use at your location. The changes are specified in the samples delivered.

Note: If you make changes to these members after Step 14 while installing
this example project, reassemble and relink the data set
PROJ1.PROJDEFS.SOURCE(PROJ1). If you are not sure this step is
required, reassemble and relink.

12. Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(FLM02VSM). Be sure that
the job card contains valid accounting information. Change all occurrences of
USERID to PROJ1.
This member contains JCL that constructs the VSAM cluster used to contain
the accounting information used by SCLM. You also need to alter the volumes
for IDCAMS for your location, and you might need to make additional
changes to conform to requirements at your location.

13. Submit the JCL in PROJ1.PROJDEFS.SOURCE(FLM02VSM). You know that
your job has completed successfully when the PROJ1.ACCOUNT.FILE VSAM
cluster is created.
This is the VSAM data set that contains the SCLM accounting information for
the project. This job deletes the cluster and then creates the cluster. Because
the cluster does not exist the first time you submit the job, you receive a
return code of 8 in the listing data set.

14. Use ISPF Foreground Assembler H to assemble
PROJ1.PROJDEFS.SOURCE(PROJ1).

Chapter 1. Defining the Project Environment 55

Be sure that the SCLM macro library used at your location is in the
concatenation sequence for the libraries used by the assembler. Specify the
macro library in the Additional Input Libraries field on the Foreground
Assembly panel.
Look at the listing and confirm that no statements were flagged.

15. Use the ISPF Foreground Linkage Editor to link edit
PROJ1.PROJDEFS.OBJ(PROJ1). This constructs the load module
PROJ1.PROJDEFS.LOAD(PROJ1) that is executed by SCLM to control the
library.
Verify that the link occurred without errors.

16. Use the ISPF Move/Copy Utility to copy the following members from
ISP.SISPSAMP into PROJ1.DEV1.SOURCE (these are the source members for
the application and are moved into PROJ1.RELEASE.SOURCE later):
FLM01EQU, FLM01MD1, FLM01MD2, FLM01MD3, FLM01MD4, FLM01MD5,
and FLM01MD6.

17. Use the ISPF Move/Copy Utility to copy the following members from
ISP.SISPSAMP into PROJ1.DEV1.ARCHDEF (these are the architecture
definition members and are moved into PROJ1.RELEASE.ARCHDEF later):
FLM01AP1, FLM01ARH, FLM01CMD, FLM01LD1, FLM01LD2, FLM01LD3,
FLM01LD4, FLM01SB1, and FLM01SB2.

Understanding the Sample Project Definition

This section examines the project definition used for the library in the sample
project. Typically, the project manager is responsible for developing and
maintaining the project definition.
1. Select the View option from the SCLM Main Menu and type:

PROJ1 in the Project field
DEV1 in the Group field

Press Enter.

Type 'PROJ1.PROJDEFS.SOURCE(PROJ1)' in the Data Set Name field, and press
Enter to examine the member that contains the project definition for PROJ1.
The macros are:

FLMABEG FLMABEG initializes the project definition by defining the project name
as PROJ1.

FLMTYPE FLMTYPE defines each type. The type values are

ARCHDEF architecture definitions

SOURCE source code

SOURCLST listings from compilers and assemblers

OBJ object code

LMAP load module maps

LOAD executable load modules

The type names were chosen arbitrarily for this sample project.

FLMGROUP FLMGROUP defines each group. The PROMOTE keyword defines the
library structure. Note that DEV1 and DEV2 are promoted to TEST and
TEST is promoted to RELEASE.

56 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

FLMCNTRL FLMCNTRL identifies the default VSAM data sets for the project. The
VSAM data sets store library control information about the members in
the project hierarchy.

COPY COPY identifies members to be copied into the project definition. The
members identified are the architecture definition language, assembler
language, PL/I language, link edit language, and SCRIPT language
definitions.

FLMAEND FLMAEND ends the project definition.

An additional developer, DEV3, can be added with another FLMGROUP
macro, as shown in the following example:
DEV3 FLMGROUP AC=(P),KEY=Y,PROMOTE=TEST

The project definition specifies the names of the partitioned data sets used by
the project (for example, PROJ1.DEV1.SOURCE), the library structure for the
groups (for example, DEV1 members are promoted to TEST), and the languages
to be used (for example, architecture definition, ASM, PL/I, and link edit).

2. View the PROJ1.PROJDEFS.SOURCE members:

FLM01ASM ASM language definition
FLM01PLI PLIO language definition
FLM01370 linkage editor language definition

Note the following points about these members:

FLMSYSLB This macro can be used to define a set of libraries that contain project
and/or system macros or includes.

FLMLANGL This macro specifies the language identifier.

FLMTRNSL This macro is used once for each translator to be invoked for a language.

The SCLM parser is invoked when the keyword FUNCTN specifies
PARSE. The SCLM parser stores statistics (for example, lines-of-code
counts) and dependency information (for example, includes and copy
statements).

The build translator is invoked when the keyword FUNCTN specifies
BUILD. In FLM01370, the linkage editor IEWL is invoked. The build
fails unless the return code is equal to, or less than, the value specified
by the keyword GOODRC (0 in this example).

FLMALLOC This macro is used to allocate data sets and ddnames required by
translators.

Preparing the Example Project Data

The following steps prepare the example project data. You should follow the steps
in the order listed and exactly as they are described. When you have completed all
of the steps, all necessary data will reside at the RELEASE group. At this point,
you or other SCLM users can use the data to experiment with and understand
SCLM.

1. Select the SCLM option from the ISPF Primary Option panel.
2. Select the Utilities option from the SCLM Main Menu. Type:

PROJ1 in the Project field
DEV1 in the Group field

Leave the Alternate field blank.

Chapter 1. Defining the Project Environment 57

3. From the Utilities panel, select the Migration option. Type:

SOURCE in the Type field
FLM01MD2 (the
PL/I module)

in the Member field

1 in the Mode field
PLIO in the Language field
1 in the Process field
1 in the Messages field
4 in the Listings field

Press Enter to begin processing. The migration utility registers new modules
(in this case, FLM01MD2) into an SCLM library by creating accounting records
for them.

4. When the migration is complete, you receive the message MIGRATION
UTILITY COMPLETED with RETURN CODE = 0. The Migration Utility panel
reappears. Type:

* in the Member field
ASM in the Language field

Press Enter to begin processing.

Notice that you did not have to type EX on the command line or re-enter a
value in the Process field. The value is carried from panel to panel and is
maintained as is until you change it.

The Migration Utility registers the SCLM accounting information for the
remaining new modules (in this example, all are assembler language
modules). Each time you use the Migration Utility, you can only migrate
modules written in the same language. This example migrates FLM01MD2
first. After its migration, the other modules can be referenced as a group by
using the asterisk (*). Because FLM01MD2 was migrated first, SCLM does not
migrate it again when an * is specified.

5. When the migration is complete, you receive the message MIGRATION
UTILITY COMPLETED with RETURN CODE = 0. The Migration Utility panel
reappears. Type:

ARCHDEF in the Type field
* in the Member field
ARCHDEF in the Language field

Press Enter to begin processing.
6. Return to the SCLM Main Menu. Select the Build option and press Enter.
7. On the Build panel, type:

DEV1 in the Group field
ARCHDEF in the Type field
FLM01AP1 in the Member field
/ (slash) in the Error Listings only field
1 in the Mode field
2 in the Scope field
1 in the Messages field
1 in the Report field
3 in the Listings field

58 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Press Enter. All modules in the project are assembled or compiled. SCLM
updates the accounting information to indicate that a build operation was
performed on each module. The Build Messages and Build Report reappears.
The build should complete with a RETURN CODE = 0. The Build panel
reappears.

If all of the site-dependent changes to the system macro library references
were not made in 10 on page 55, build errors can occur during this step. If this
happens, correct the macros, reassemble and link-edit the project definition,
and repeat this step.

8. Return to the SCLM Main Menu. Select the Promote option and press Enter.
9. On the Promote panel, type:

DEV1 in the From Group field
ARCHDEF in the Type field
FLM01AP1 in the Member field
1 in the Mode field
1 in the Scope field
1 in the Messages field
1 in the Report field

Press Enter. SCLM copies all members for all types at the DEV1 group to the
TEST group and then purges all members from the DEV1 group. The Promote
Messages and Promote Report appears. The Promote should complete with a
RETURN CODE = 0. The Promote panel reappears.

10. On the Promote panel, type:

TEST in the From Group field
ARCHDEF in the Type field
FLM01AP1 in the Member field
1 in the Mode field
1 in the Scope field
1 in the Messages field
1 in the Report field
EX on the command line

Press Enter. SCLM copies all members for all types at the TEST group to the
RELEASE group and then purges all members from the TEST group. The
Promote Messages and Promote Report appears. The Promote should
complete with a RETURN CODE = 0. The Promote panel reappears.

All of the modules are located in the RELEASE group, and the SCLM example
project, PROJ1, is now ready to use. This scenario illustrates the status of a current
release of a product that does not have any maintenance, test, or development
activities underway.

Chapter 1. Defining the Project Environment 59

60 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 2. Additional Project Manager Tasks

In addition to the tasks described in Chapter 1. Defining the Project Environment,
project managers can perform other tasks associated with defining and maintaining
SCLM projects. This chapter describes other areas of responsibility in which project
managers are involved. These include:
v Splitting VSAM data sets
v Backing up and recovering the project environment
v Synchronizing and maintaining accounting data sets
v Modifying the Delete Group dialog interface

Splitting Project VSAM Data Sets

You might need to split the project VSAM data sets into multiple data sets because
of security requirements, data set size, performance or changes in the way the
project is being developed. By using multiple VSAM data sets in conjunction with
flexible data set naming, cross-project support (for example, sharing common code)
can be achieved.

The following steps make up the basic process for splitting project VSAM data
sets:
1. Decide how you want to split the data sets. SCLM allows the VSAM data sets

to be split on group boundaries.
2. Back up the data from the existing VSAM data sets for those groups using the

new VSAM data sets. There are two ways to back up the data:
a. You can use the SCLM export utility to export the contents of each group to

the new data set. Because the Import utility deletes the contents of the
export data set upon a successful completion of the import, you should
make a backup of the export VSAM data sets using the IDCAMS
reproduction utility (REPRO). By using this method, you do not need to
update the contents of the PDS data sets. You only need to copy members
from those groups that will be using the new VSAM data set. This method
does not copy the audit records.

Note: Using the REPRO function of the IDCAMS utility, you can split the
audit data base at any point to create any number of smaller audit
data bases. In order to use these smaller audit data bases, create
alternate project definitions that specify the newly created audit data
bases.

b. You can use the IDCAMS REPRO utility to make a copy of each of the
VSAM data sets used by the project. This method has the advantage of
creating a backup of the project VSAM data sets. All records are copied to
the new VSAM data set. While having the copies for all groups in the new
VSAM data set is not a problem for SCLM, it does increase the size of the
data set. These records can be deleted by setting up an alternate project
definition that points only to the new VSAM data set and using the Delete
Group service to delete the groups that are not needed in that data set.

3. Make a backup copy of the project definition. This backup copy is needed to
delete the data from the original VSAM data sets.

4. Update the project definition to add an FLMALTC macro for the new data sets
and ALTC parameters on the groups that will be using those data sets.

© Copyright IBM Corp. 1990, 1999 61

5. Allocate the new VSAM data sets.
6. Assemble the new project definition.
7. Restore the data for the new VSAM data set from backup. How you do this

depends on what method you used to back up the data:
a. If you used the Export utility, use the Import utility to restore the data to

the new VSAM data sets.
b. If you used the IDCAMS REPRO utility, use the REPRO utility to restore the

data. You can do this before assembling the new project definition because
it does not use any SCLM services.

8. Test the new project definition. Here are some suggestions for testing the new
project definition:
v Edit a member at the modified group. Create a new member, and also edit

an existing member.
v Run a build from the modified group.
v Promote from the modified group.

9. Delete data from the existing VSAM data set for those groups that reference the
new VSAM data set. You can do this by using a backup copy of the old project
definition and the Delete Group utility for each group that was moved.
If you used the method of promoting to a new group, this step is not needed.

Backing Up and Recovering the Project Environment

The important point in backing up and recovering the project environment is that
all the data remains synchronized. The project partitioned data sets contain related
data, and the control data sets contain the control information for the PDS
members. Thus, backing up and restoring the project environment means that the
project partitioned data sets and the control data sets must be backed up and
restored together.

The recommended procedure for backing up the project environment is to run a
background job when no one is working within the hierarchy. You should
determine how often to run this job. Remember that the topmost group of the
hierarchy (the production group) usually contains most of the software and is
usually frozen. You should back up the topmost groups whenever new data is
promoted into the topmost groups. The lower groups in the hierarchy are subject
to change much more often, and the code in the development groups usually
changes daily. Perform backups for the lower groups based on your project’s
requirements. Again, remember that you must back up an entire group as a unit;
this includes the project partitioned data sets and the control data sets.

Be careful when recovering a project environment. When you restore a group, it
returns to the version that was in effect when you backed it up. This change can
affect code below the restored group. Also the control data sets reflect the status of
the group when it was backed up.

Synchronizing Accounting Data Sets

The SCLM FLMCNTRL and FLMALTC macros allow you to select dual accounting
data sets to be maintained using the ACCT and ACCT2 parameters. If a
nonrecoverable problem occurs with one of the primary accounting data sets, use
the following JCL to restore the primary accounting data set.

62 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

You can also use this JCL to initialize a backup data set for a project that is
currently running under SCLM. If problems occur with the backup data set, SCLM
issues warning messages. You must restore the backup data set when problems
occur.

Maintaining Accounting Data Sets

When groups or types are removed from the project definition, some accounting
information from those groups or types can remain in the VSAM data sets for that
project. In order to avoid having records that are no longer useful in the VSAM
data sets, you should use the DELGROUP service to remove the VSAM records for
any groups or types that are being removed from the project definition. This step
should be performed before the groups and types are removed from the project
definition.

If groups or types have been previously removed from the project definition, you
can create an alternate project definition that includes a definition for the removed
groups and types. This project definition can be used with the DELGROUP service
to delete any remaining VSAM records.

Modifying the Delete Group Dialog Interface

Given the power of Delete Group, there are some restrictions in the dialog
interface. Explanations for the restrictions and instructions for modifying the dialog
to remove such restrictions follow.

The Group field is restricted to disallow patterns. To remove this restriction:
1. Edit the panel FLMDDG#P. It is recommended that you update the DTL

version instead of the generated panel to avoid losing the changes if the panel
is regenerated. Refer to Dialog Tag Language (DTL) Guide and Reference for more
information.

2. Replace the line:
<dtafld datavar=DGLEVEL usage=both

entwidth=8 pmtwidth=12 >&lib_prompt;

with the lines:
<dtafld datavar=DGLEVEL usage=both

deswidth=41 entwidth=9 pmtwidth=12 >&lib_prompt;
<dtafldd>(Pattern can be used)

//jobname JOB (wkpkg,dpt,bin),'name'
//***
//* *
//* JCL TO RESTORE THE PRIMARY ACCOUNTING DATA SET FROM THE *
//* SECONDARY ACCOUNTING DATA SET. *
//* *
//* SPECIFY THE UNCORRUPTED DATA SET AS YOUR INPUT DATA SET *
//* *
//***
//STEP1 EXEC PGM=IDCAMS
//INPUT DD DISP=OLD,DSN=PROJ1.ACCOUNT2.FILE
//OUTPUT DD DISP=OLD,DSN=PROJ1.ACCOUNT.FILE
//SYSPRINT DD SYSOUT=H
//SYSIN DD *
REPRO INFILE(INPUT) OUTFILE(OUTPUT)

/*
//

Chapter 2. Additional Project Manager Tasks 63

or with the lines:
<dtafld datavar=DGLEVEL usage=both

deswidth=41 entwidth=17 pmtwidth=12 >&lib_prompt;
<dtafldd>(Pattern can be used)

depending upon how you resolve the next restriction. They should be
consistent if patterns are allowed.

3. Edit the imbed FLMZDG#P, and replace the line:
VER(&DGLEVEL,NB,NAME)

with the line:
VER(&DGLEVEL,NONBLANK)

Type and Member fields are restricted to 9 characters; FLMCMD and FLMLNK
allow up to 17 characters. To remove this restriction:
1. Edit the panel FLMDDG#P. It is recommended that you update the DTL

version instead of the generated panel to avoid losing the changes if the panel
is regenerated. Refer to Dialog Tag Language (DTL) Guide and Reference for more
information.

2. Replace the lines:
<dtacol entwidth=8 pmtwidth=12

deswidth=49 fldspace=11 >

with the lines:
<dtacol entwidth=17 pmtwidth=12

deswidth=41 fldspace=11 >

The Delete mode always defaults to Report when the panel appears. To remove
this restriction, remove the following lines from the FLMZDG#P panel imbed:
&DMODE = 'REPORT'
&DMODEV = '2'

64 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 3. Converting Projects to SCLM

To convert an existing project to an SCLM-controlled project, bring the project
groups under control one at a time beginning with the top layer of the hierarchy,
which is the production (frozen) group, and work downward. Most projects to be
converted already exist in some kind of logical hierarchy. If all production source
code resides in one logical place and code under development resides elsewhere,
you have at least a two-layer hierarchy. Before migration can begin, you must place
the source code to be converted into partitioned data sets.

There are many advantages to using the preceding method. First, you can bring a
project under SCLM control in discrete steps, over a period of time. Second, SCLM
can locate integrity problems in the existing hierarchy and fix them systematically
during the conversion process. Third, SCLM performs the conversion using the
same tools that developers use in the normal development process. Thus, you
ensure consistency within the hierarchy, and you become familiar with SCLM.
Finally, from the conversion process, you receive an indication of the performance
that you can expect of SCLM during the development process.

Prerequisites for Existing Hierarchies

The best time for you to begin the conversion process is when the components to
be controlled are concentrated in a small number of groups—immediately
following a software release, for example. The following actions help you prepare a
hierarchy for the conversion process.
v Create the project definition to be used with the converted hierarchy. See

Chapter 1. Defining the Project Environment, for details.
v Verify that all partitioned data sets to be controlled are available online. If the

data is not in partitioned data sets, allocate partitioned data sets by following
“Step 5: Allocate the Project Partitioned Data Sets” on page 13, and copy data
from the existing data sets to the partitioned data sets.

v Delete all unnecessary data from the libraries being converted.
v If you intend to use non-key groups in the converted hierarchy, ensure that they

do not contain any data prior to conversion.

Create Alternate Project Definitions

You need to create several alternate project definitions to complete the conversion
process. Because the SCLM migration utility can only run against development
libraries, which are in the lowest layer of the hierarchy, you need an alternate
project definition for each layer of the proposed hierarchy. The first alternate
project definition you use defines only the topmost group. That group becomes a
development group. The second project definition defines the topmost group and
those groups that promote into it, and so on. You do not need to define non-key
groups in the alternate project definitions you use for the conversion process
because they should not contain any members.

© Copyright IBM Corp. 1990, 1999 65

Create Architecture Definitions for the Project

Although you can perform the conversion process without architecture definitions,
their creation can greatly simplify the conversion process as well as support future
development needs. Define a set of architecture members first for the code in the
topmost group of the hierarchy. These architecture members must reference only
members that are present in the topmost group because only those members are
visible during the first group conversion.

To determine which architecture members you need, do the following:
1. Determine whether all the build translators can use the default translator

options in the language definitions. If they can, you do not need compilation
control architecture members.

2. Determine the contents of every load module to be controlled. The IEHLIST
utility prints the names of all objects in a load module.

3. Produce a linkage edit control architecture member for every load module, and
reference each object (actually compilable source members) with an INCLD
statement. Use the INCL statement in place of INCLD to reference compilation
control architecture members if they are created above.

4. Produce high-level architecture members as needed to control any
non-translatable data or data that is not included in load modules.

5. Produce a high-level architecture member and reference each linkage edit
control architecture member and high-level architecture member defined above
with an INCL statement.

The high-level architecture member created in Step 5 now defines, through its
dependencies, the entire application architecture.

After you create the architecture members for the topmost group, you might need
to add modifications in the lower groups of the hierarchy. Members that were
added during the development process and were not moved to the topmost group
may require additional architecture members. You must introduce architecture
modifications in the group requiring the change. This action allows the architecture
for the hierarchy to match the members controlled in the hierarchy. See Part One of
this book for a description of the process and syntax for defining architecture
members.

Register Existing PDS Members with SCLM

Editable members and noneditable members are processed in separate and unique
ways by SCLM.

Editable members, such as source members, are not created by the SCLM build
function. Editable members must be registered with SCLM through the migration
utility. Both the language associated with the member and a change code (only if
you have a change code verification routine) are required as input to the migration
utility. TEXT can be used as the language of members that do not need to be
compiled, assembled, or processed, such as panels and messages. Call the
migration utility for each library containing editable members.

The SCLM Build function creates noneditable members. Object code, listings, and
load modules are examples of noneditable members. The SCLM build function
must be called to create all of the noneditable members to be tracked within the
hierarchy. If all of the customization related to language translators is complete and

66 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

has been tested, run the build processor in the unconditional mode using the
topmost architecture member for your application. This unconditional build will
identify all build errors that exist. If errors are anticipated and the application is
large, use architecture members with smaller scopes. For example, use an LEC
architecture member rather than an HL. Using the conditional mode of the build
processor causes processing to stop when a member containing an error is
encountered.

The normal process is to migrate source members into SCLM and then generate
the outputs using the SCLM Build function. There may be occasions, however,
where you would like to use SCLM to manage object and load modules for which
the source code no longer exists. There are two ways of doing this.

The first method uses a ’dummy’ language definition with an FLMLANGL macro,
but no FLMTRNSL macros. An example of this is provided as member FLM@OBJ
in the ISP.SISPMACS data set shipped with SCLM. This language definition allows
you to migrate object and load modules into SCLM as editable members in the
same manner that source modules are introduced.

Note: Special care must be taken when using versioning in a project that has
stored object and load modules in this manner. SCLM will consider the
members to be editable and will allow versioning to occur if specified. This
may cause errors in SCLM version processing. The second method is a
better choice when versioning is being used in the project.

The second method involves migrating the object and load modules into a
temporary type and then using the SCLM Build function to copy them to the
target type. The SCLM build process will mark the copied object and load modules
as non-editable. This solution is a better choice for projects with versioning in use.
Member FLM@COPY in the ISP.SISPMACS data set shipped with SCLM can be
used to store object modules into SCLM in this manner. It can be modified for use
with load modules. This language definition will migrate the members into a
temporary type as editable members. SCLM will allow the migrate because, like
the FLM@OBJ language definition, there is no FLMTRNSL macro with
FUNCTN=PARSE and therefore no parser will be invoked. The FLMTRNSL macro
for the Build function calls IEBGENER to copy the modules from one SCLM type
to the other as non-editable outputs.

Introducing Fixes to the Converted Hierarchy

During the conversion process, SCLM might discover integrity errors existing in
the current development hierarchy. If it encounters these errors in the topmost
group of the hierarchy, the errors have an effect on the rest of the conversion
process. You can encounter two kinds of errors:
v Dependency errors for editable members. Errors can be caused when an

included member or macro cannot be found within the hierarchy. If you want
the missing member tracked in the hierarchy, you must copy the correct version
of the included member to the group being converted. If you do not want the
missing member tracked in the hierarchy, define it to SCLM using the
FLMSYSLB macro and the FLMCPYLB macro in the language definition of the
member.

v Compile errors, or any similar translator errors in any group, located during the
build process. The errors must be corrected before proceeding with the
conversion. Use the listings produced by build to locate and correct the errors.
After making the correction rebuild the members that contained the errors.

Chapter 3. Converting Projects to SCLM 67

68 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 4. Language Definition Considerations

SCLM can be tailored to support languages other than those listed in the examples
provided with the product. By creating a language definition as part of the project
definition, you specify to SCLM the languages that will be used for the project.
Language definitions provide SCLM with language-specific control information
such as the language name and the definition of the language translators.

The language definition describes language-specific processing in two ways.

From a data-flow perspective, the language definition specifies all data sets used as
input to or output from various SCLM processes such as Parse, Build, Promote,
and Delete.

From a procedural perspective, the language definition specifies the translators (for
example, parsers or compilers) that are invoked to process your SCLM-controlled
data. The order in which those translators are invoked and the options to be
passed to the translators are defined in the language definition.

You must provide SCLM a language definition for each language (PL/I, COBOL,
Link Edit, and so on) that you want SCLM to support. In most cases, you can
make minor modifications to sample SCLM language definitions provided with the
ISPF product.

A language definition consists of a hierarchy of the following definitions:
v System library definitions
v Language identifier definition
v Translator definitions
v Allocation definitions
v Copy library definitions
v Include set definitions.

Because a macro exists for each of these definitions and because each macro
accepts a number of different parameters, you can specify a large variety of
language definitions. The language definitions provided with the product are
examples that can serve as a reference in the construction of language definitions
for a specific application and environment.

To determine what modifications you can make to the language definition, become
familiar with the parameters of the language definition macros as documented in
ISPF Software Configuration and Library Manager (SCLM) Reference. Typically, if you
want to write a new language definition, you should copy an old language
definition and then modify it to meet your specific needs.

In the remainder of this chapter, several language definitions are examined more
closely in order to describe some of the implementations of language definitions.
Topics discussed in this chapter include:
v Using multiple translators in a language definition
v Invoking user-defined parsers
v Processing conditionally saved components
v Specifying the location of included members
v Tracking dynamic includes
v Using input list translators.

© Copyright IBM Corp. 1990, 1999 69

Using Multiple Translators in a Language Definition

You can define one or more translators for a language using the FLMTRNSL
macro. The parameters of the FLMTRNSL macro define all the attributes needed to
call a given translator. The FLMTRNSL FUNCTN parameter defines the function or
purpose for which a translator is called. SCLM uses translators for the following
functions:
v Parsing source code to determine statistics and dependency information. SCLM

calls these translators when a member is saved in the editor or migrated (dialog
function or MIGRATE service) or saved with the SAVE service.

v Translating one form of code into another. Some examples of code translations
are:
– Source code to object code and listings
– Script input to a formatted document
– Object code to load modules.

SCLM calls these translators during the build process.
v Verifying data. A verify translator can be used to perform validation in addition

to the default SCLM validation. The verify translator is invoked prior to the
translation step (such as compiling and linking) of build, and prior to the copy
phase of promote.

v Copying data. SCLM calls these translators during the promote process. The
data can be either PDS members controlled directly by SCLM or non-PDS data
that includes an intermediate form of compilation units and external data
identified to SCLM via a build translator.

v Purging data. SCLM calls these translators during the promote process. The data
can be either PDS members controlled directly by SCLM or non-PDS data that
includes an intermediate form of compilation units and external data identified
to SCLM via a build translator.

The translators required for a language are language-specific. Some languages
require parse and build translators while others need parse, build, copy, and purge
translators.

Most SCLM-supplied example language definitions have two translators defined.
The first identifies the parser to be invoked, and the second identifies the translator
to be invoked during a build. Language definitions can be created for the
invocation of one or more translators during the parse, build, copy, verify, or purge
functions. For each of these functions, the translators are invoked in the order in
which they appear in the language definition. Within a function in the language
definition, a translator can pass data on to the next translator invoked by that
function within the language definition. This capability allows you to customize
the SCLM product for unique processing requirements in your project.

When connecting SCLM translators together in a language definition, make sure
that they are ordered so that they will execute in the correct sequence. If used for
build, you should order the preprocessing and compile steps just as you would in
a CLIST or JCL.

If multiple-step language definitions specify more than one translator to be
invoked during a build, make sure the DDNAMEs for outputs to be copied into
the project hierarchy are unique. If the same DDNAME is used, only the outputs
from the last translator will be copied to the hierarchy.

70 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Note: If a translator is defined with an EXLIBID parameter (that is, it is to be used
by an external library), SCLM will ignore this translator and not invoke it.
SCLM will behave as if this translator does not exist.

Figure 19 shows a language definition that uses multiple translators. The DB2
preprocessor (DSNHPC) creates a COBOL source data set using the SYSCIN
ddname. The next translator, the COBOL II compiler IGYCRCTL, reads in the
SYSCIN data set. Notice that the receiving translator defines SYSCIN as
IOTYPE=U, meaning that SYSCIN has already been allocated in a previous
translator step.

Chapter 4. Language Definition Considerations 71

* COBOL II WITH DB2 PREPROCESSOR - LANGUAGE DEFINITION FOR SCLM
*
* DB2 OUTPUT IS PASSED VIA THE 'SYSCIN' DD ALLOCATION TO COBOL II.
* POINT THE FLMSYSLB MACRO(S) AT ALL 'STATIC' COPY DATASETS.
* CUSTOMIZE THE 'OPTIONS' AND 'GOODRC' FIELDS TO YOUR STANDARDS.
* ADD THE 'DSNAME' FIELD IF THE TRANSLATOR IS IN A PRIVATE LIBRARY.
* WHEN A NEW TRANSLATOR VERSION REQUIRES TOTAL RECOMPILATION FOR THIS
* LANGUAGE, THE 'VERSION' FIELD ON FLMLANGL SHOULD BE CHANGED.

* CHANGE ACTIVITY: *
* *

*

FLMLANGL LANG=DB2COB2,ALCSYSLB=Y
*
* PARSER TRANSLATOR
*

FLMTRNSL CALLNAM='SCLM COBOL PARSE', C
FUNCTN=PARSE, C
COMPILE=FLMLPCBL, C
PORDER=1, C
OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

*
* BUILD TRANSLATORS
*
* --DB2 PREPROCESSOR INTERFACE--

FLMTRNSL CALLNAM='DB2 PREPROCESS', C
FUNCTN=BUILD, C
COMPILE=DSNHPC, C
VERSION=1.0, C
GOODRC=4, C
PORDER=3, C
OPTIONS=(HOST(COB2))

* 1 -- N/A --
FLMALLOC IOTYPE=N

* 2 -- N/A --
FLMALLOC IOTYPE=N

* 3 -- N/A --
FLMALLOC IOTYPE=N

* 4 -- SYSLIB --
FLMALLOC IOTYPE=I,KEYREF=SINC

* 5 -- SYSIN --
FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C

RECNUM=2000
* 6 -- SYSPRINT --

FLMALLOC IOTYPE=W,RECFM=FBA,LRECL=121, C
RECNUM=9000,PRINT=I

* 7 -- N/A --
FLMALLOC IOTYPE=N

* 8 -- SYSUT1 --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 9 -- SYSUT2 --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 10 -- SYSUT3 --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

Figure 19. COBOL II with DB2 Preprocessor (Part 1 of 2)

72 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

* 11 -- N/A --
FLMALLOC IOTYPE=N

* 12 -- SYSTERM --
FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

* 13 -- N/A --
FLMALLOC IOTYPE=N

* 14 -- SYSCIN --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C

RECNUM=9000,DDNAME=SYSCIN
* 15 -- N/A --

FLMALLOC IOTYPE=N
* 16 -- DBRMLIB--

FLMALLOC IOTYPE=P,DDNAME=DBRMLIB,MEMBER=@@FLMONM, C
DFLTTYP=DBRM,KEYREF=OUT1, C
RECFM=FB,LRECL=80,RECNUM=5000,DIRBLKS=1

*
* --COBOL II INTERFACE--
*

FLMTRNSL CALLNAM='COBOL II COMPILER', C
FUNCTN=BUILD, C
COMPILE=IGYCRCTL, C
VERSION=2.0, C
GOODRC=0, C
PORDER=3, C
OPTIONS=(XREF,LIB,APOST,NODYNAM,LIST,NONUMBER,NOSEQ)

*
* DDNAME ALLOCATION (USING DDNAMELIST SUBSTITUTION)
*
* 1 (* SYSLIN *)

FLMALLOC IOTYPE=O,KEYREF=OBJ,RECFM=FB,LRECL=80, C
RECNUM=5000,DFLTTYP=OBJ,DDNAME=SYSLIN

* 2 (* N/A *)
FLMALLOC IOTYPE=N

* 3 (* N/A *)
FLMALLOC IOTYPE=N

* 4 (* SYSLIB *)
FLMALLOC IOTYPE=I,KEYREF=SINC,DDNAME=SYSLIB

* 5 (* SYSIN *)
FLMALLOC IOTYPE=U,DDNAME=SYSCIN

* 6 (* SYSPRINT *)
FLMALLOC IOTYPE=O,KEYREF=OUT2,RECFM=FBA,LRECL=133, C

RECNUM=25000,PRINT=Y,DFLTTYP=LIST,DDNAME=SYSPRINT
* 7 (* SYSPUNCH *)

FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

* 8 (* SYSUT1 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 9 (* SYSUT2 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 10 (* SYSUT3 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 11 (* SYSUT4 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 12 (* SYSTERM *)
FLMALLOC IOTYPE=A,DDNAME=SYSTERM
FLMCPYLB NULLFILE

* 13 (* SYSUT5 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 14 (* SYSUT6 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 15 (* SYSUT7 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

Figure 19. COBOL II with DB2 Preprocessor (Part 2 of 2)

Chapter 4. Language Definition Considerations 73

Invoking User-Defined Parsers

SCLM allows you to replace an SCLM-supplied source parser with a user-defined
source parser. This option is important when you are defining a new language for
a project because such a language is likely to have a syntax unlike any of the
languages that the SCLM-supplied parsers can recognize.

When you write a new parser for a language, you must:
1. Define the information tracked by SCLM in terms of the syntax of the language

you want to support.
2. Write a program, based on the information you defined, that passes the

statistical and dependency information for a member written in this new
language to SCLM. This program is called a parser.

3. Tell SCLM how to invoke your parser.

At the end of this section is a parser, written in PL/I and Assembler, for the ISPF
skeleton (SKELS) language. See Figure 21 on page 77, Figure 22 on page 85, and
Figure 23 on page 85. We will take you through the three preceding steps and use
the SKELS parser as an example.

Several user-modifiable parsers, written in REXX, are shipped with SCLM.
FLMLRASM (Assembler), FLMLRCBL (COBOL), FLMRC2 (workstation C/C++
and resource files), FLMLRIPF (workstation help files), FLMLRC37 (C/370) and
FLMLRCIS(C/C++ for MVS with include set support) are described in ISPF
Software Configuration and Library Manager (SCLM) Reference Chapter 6.
Understanding and Using the Customizable Parsers contains information on
modifying the REXX parsers.

Defining Information Tracked by SCLM

SCLM tracks four kinds of information for each module:
v Statistical information

Statistical information includes such data as the total lines and the number of
comments in the module. See Part One of this book for a description of the 10
statistics kept by SCLM.

v Dependency information
SCLM tracks two types of dependency information. The first is the name of the
members that are included by a member. The second is the include set that is
used to find the include. This information is used when a member is built or
promoted. See “Specifying the Locations of Included Members” on page 87 for
more information on the include information kept by SCLM.

v Change code information
The change code information is a list of change codes associated with members
under SCLM control. These change codes are optional unless the project
manager has defined a change code verification routine requiring them. Includes
and change codes for a member can be viewed with the Library Utility.

v User-defined information

74 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

User-defined information is a list of free-form records derived from the member
via the parse translator and stored in the accounting record. When writing a
new parser, define exactly how the parser derives this information from a
module.

Writing the Parser

Consider these things when you write your own parser:
v If any information is to be passed to the parser from SCLM, it is passed through

a single parameter string as if your program had been invoked from TSO as:
CALL program 'parameter list'

v You can use the SCLM variables to pass information to the parser about the
module to be parsed.

v You can allocate any files you need (including the module to be parsed) to
ddnames or pass the data set names directly through the parameter list.

v SCLM allocates space for an array and a structure. It is up to the parser to place
statistical and dependency information in the array and the structure as it parses
the module. SCLM can pass the address of the structure and the array to the
parser through the parameter list string. If the parser returns a successful return
code, SCLM moves the parsed information into the accounting record of the
module.

The SKELS parser example consists of four routines. Together, these routines
perform the work needed to parse an ISPF skeleton as we have described.

GETPTRS
Takes the addresses from the parameter list and places them in the
appropriate pointer variables.

INITIAL
Initializes the counter variables and the parse structure (STAT_INFO).

PARSE
Reads the lines of the skeleton one at a time, and saves any statistical or
dependency information it finds.

WRAPUP
Prepares the parse structure and the parse array (LIST_INFO) to be passed
back to SCLM.

Telling SCLM How to Invoke Your Parser

You need to add a few SCLM macros to your project definition for SCLM to
invoke your parser. The macros used to define the SKELS parser are shown in
Figure 20 on page 76 For your parser, you need:

v An FLMLANGL to define your language (if it is not already there)
v An FLMTRNSL to define your parser
v An FLMALLOC for each ddname required by your parser
v An FLMCPYLB for each data set name you want to specify.

In Figure 20, you can examine the keywords on the macros to see how they are
used.

On the FLMLANGL macro, the LANG parameter indicates the string (in this case
it is SKELS) that needs to be given to SCLM when you want SCLM to treat a

Chapter 4. Language Definition Considerations 75

module like a skeleton. The BUFSIZE parameter is the number of elements in the
LIST_INFO array that SCLM passes to the parser.

On the FLMTRNSL macro, the COMPILE and DSNAME parameter tell SCLM that
the parser can be found in SCLM.PROJECT.LOAD(FLM@SKLS). The OPTIONS
parameter contains three SCLM variables: @@FLMSTP, @@FLMLIS, and
@@FLMSIZ. When the parser converts the character string values of @@FLMLIS
and @@FLMSTP to fullword binary integers, the result is the addresses of the
LIST_INFO array and the STATS_INFO structure, respectively. The value of
@@FLMSIZ is the number of bytes allocated for the LIST_INFO array.

The first FLMALLOC macro allocates the module to be parsed to ddname
SSOURCE. The SKELS parser looks at this ddname for the skeleton source. The
second FLMALLOC macro allocates an error listings file. If an error occurs during
the parse, the SKELS parser writes out a message explaining the situation and
providing a recommended solution. If the SKELS parser passes back a return code
greater than that specified on the GOODRC parameter of the FLMTRNSL macro,
the contents of this listings file are written to the edit listings file for the parse.
This is the way you can pass messages and information about the parse to your
users.

/***/
/* ISPF SKELETON LANGUAGE DEFINITION */
/***/

FLMLANGL LANG=SKEL,VERSION=V2.3,BUFSIZE=50

PARSER TRANSLATOR

FLMTRNSL CALLNAM='SKEL PARSER', C
COMPILE=FLM@SKLS, C
DSNAME=SCLM.PROJECT.LOAD, C
FUNCTN=PARSE, C
PORDER=1, C
GOODRC=0, C
VERSION=V1R0M0, C
OPTIONS='/@@FLMSTP,@@FLMLIS,@@FLMSIZ,'

(* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SSOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)
(* LISTING *)
FLMALLOC IOTYPE=W,RECFM=VBA,LRECL=133, C

RECNUM=6000,DDNAME=ERROR,PRINT=Y

Figure 20. SKELS Parser Definition

76 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

PROCESS;
/**/
/*** ***/
/*** Program: PSKELS ***/
/*** ***/
/*** Purpose: Performs an SCLM parse of ISPF skeletons after ***/
/*** SCLM edit and during migration of source to SCLM.***/
/*** ***/
/*** Inputs: A parameter list containing addresses of a ***/
/*** structure and a variable-length array into which ***/
/*** parse information is placed. The length of the ***/
/*** array, in bytes, is also passed. ***/
/*** ***/
/*** In addition, source from the member to be parsed ***/
/*** is read from ddname SSOURCE. ***/
/*** ***/
/*** Outputs: The structure and array are filled with parse ***/
/*** information by this program. Any error messages ***/
/*** are written to ddname ERROR. ***/
/*** ***/
/*** Retcode: A fullword integer value, indicating the overall ***/
/*** success of the parse, is returned in register 15.***/
/*** ***/
/*** 0 = Successful parse; parse information is ***/
/*** returned in the structure and array. ***/
/*** ***/
/*** 4 = Variable-length array was too small to hold ***/
/*** all of the parsed information. Not all ***/
/*** information was passed back to SCLM. The ***/
/*** number of elements needed is shown in the ***/
/*** listings data set. ***/
/*** ***/
/*** To correct this problem, either: ***/
/*** ***/
/*** * Increase the value of BUFSIZE in the ***/
/*** FLMLANGL macro for this parser, or ***/
/*** ***/
/*** * Break the skeleton being parsed into ***/
/*** smaller skeletons and use)IM to join ***/
/*** them back together. ***/
/*** ***/
/*** Logic: 1) Obtain addresses of structure and array from ***/
/*** parameter list. ***/
/*** 2) Initialize counters in structure. ***/
/*** 3) For each line of skeleton source: ***/
/*** a) Increment appropriate counters. ***/
/*** b) If record starts with)IM, find and save ***/
/*** imbedded skeleton name. ***/
/*** c) Scan the record for variable names and ***/
/*** save in a program array any new names. ***/
/*** d) If record starts with)DEFAULT, get new ***/
/*** '&' and ')' characters. ***/
/*** 4) Calculate summary statistics. ***/
/*** 5) Write an 'END ' element to end of parse array.***/
/*** 6) Return. ***/
/*** ***/
/**/

Figure 21. Parser for ISPF Skeletons (Part 1 of 8)

Chapter 4. Language Definition Considerations 77

PSKELS: PROC(PARMLIST) OPTIONS(MAIN);
DCL PARMLIST CHAR(255) VAR; /* Parameter list */
DCL PARMLISTx CHAR(255) VAR; /* Copy of the parameter list */
DCL PAREN CHAR(1), /* Contains ')' special char */

NAME CHAR(8), /* Contains a referenced name */
NAMECHRS CHAR(39), /* Valid name characters */
RECORD CHAR(80), /* Output buffer for error list */
STAT_PTR POINTER, /* Points to stats structure */
LIST_PTR POINTER, /* Points to parse array */
NON_COM_READ BIT(1), /* Prolog flag */
EOF BIT(1), /* End-of-file flag */
(I,J,K) FIXED BIN(31), /* Simple counters */
USED_ELMTS FIXED BIN(31), /* Number of parse array */

/* elements used so far */
LISTLEN FIXED BIN(31), /* Total number of available */

/* parse array elements */
RETCODE FIXED BIN(31); /* Return code */

DCL ADDR BUILTIN,
INDEX BUILTIN,
LENGTH BUILTIN,
MIN BUILTIN,
REPEAT BUILTIN,
SUBSTR BUILTIN,
VERIFY BUILTIN,
PLIRETC BUILTIN;

DCL SSOURCE FILE STREAM INPUT;
DCL ERROR FILE STREAM PRINT;
DCL FXB_OV FIXED BIN(31), /* Fullword integer */

PTR_OV POINTER BASED(ADDR(FXB_OV));
/* Pointer variable overlay on */
/* top of a fullword integer */
/* variable */

%INCLUDE(STATINFO);
%INCLUDE(LISTINFO);
RETCODE = 0;
CALL GETPTRS;
CALL INITIAL;
CALL PARSE;
CALL WRAPUP;
CALL PLIRETC(RETCODE);

Figure 21. Parser for ISPF Skeletons (Part 2 of 8)

78 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

GETPTRS: PROC;
/**/
/*** ***/
/*** Routine: GETPTRS ***/
/*** ***/
/*** Purpose: Converts the information passed to this program ***/
/*** into addresses and array length information. ***/
/*** ***/
/*** Inputs: A varying length string containing parameters in ***/
/*** the following format: ***/
/*** ***/
/*** '<stat_ptr>,<list_ptr>,<length>,' ***/
/*** ***/
/*** where stat_ptr is the EBCDIC representation ***/
/*** of the address of the static ***/
/*** portion of the account ***/
/*** record for this member, ***/
/*** list_ptr is the EBCDIC representation ***/
/*** of the address of the ***/
/*** dynamic portion of the ***/
/*** account record, and ***/
/*** length is the number of bytes ***/
/*** allocated to the dynamic ***/
/*** portion of the account ***/
/*** record. This value is equal ***/
/*** to 228 times the number of ***/
/*** elements in that array. ***/
/*** ***/
/*** Note that this format is consistent with the ***/
/*** OPTIONS keyword on the FLMTRNSL macro that ***/
/*** specifies how to invoke this parser. ***/
/*** ***/
/*** Outputs: The three variables, STAT_PTR, LIST_PTR and ***/
/*** LISTLEN are set from the values in the ***/
/*** parameter list. ***/
/*** ***/
/*** Logic: 1) Find the first comma. ***/
/*** 2) Convert the contents of the character string ***/
/*** before that comma into integer format. For ***/
/*** example, the string '19,' would be converted ***/
/*** into an integer (X'00000013') ***/
/*** 3) Find the next comma. ***/
/*** 4) Convert the contents of the character string ***/
/*** before that comma into integer format. ***/
/*** 5) Find the last comma. ***/
/*** 6) Convert the contents of the character string ***/
/*** before that comma into integer format. ***/
/*** ***/
/*** Note: We take advantage of PL/I's ability to convert ***/
/*** a number in character string format into a ***/
/*** fullword binary value. ***/
/*** ***/
/**/

PARMLISTX = PARMLIST;
I = INDEX(PARMLIST,',');
FXB_OV = SUBSTR(PARMLIST,1,I-1);
STAT_PTR = PTR_OV;
PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

Figure 21. Parser for ISPF Skeletons (Part 3 of 8)

Chapter 4. Language Definition Considerations 79

I = INDEX(PARMLIST,',');
FXB_OV = SUBSTR(PARMLIST,1,I-1);
LIST_PTR = PTR_OV;
PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

I = INDEX(PARMLIST,',');
LISTLEN = SUBSTR(PARMLIST,1,I-1);
LISTLEN = LISTLEN / 228;

END GETPTRS;
INITIAL: PROC;
/**/
/*** ***/
/*** Routine: INITIAL ***/
/*** ***/
/*** Purpose: Initializes the counters and variables to be ***/
/*** used during the parse. ***/
/*** ***/
/*** Inputs: None. ***/
/*** ***/
/*** Outputs: Initialized variables. ***/
/*** ***/
/**/

STATINFO.LINES.TOTAL = 0; /* # of lines in the skeleton */
STATINFO.LINES.COMMENT = 0; /* # of lines starting with)CM */
STATINFO.LINES.NON_COMMENT= 0; /* # lines not starting w/)CM */
STATINFO.LINES.BLANK = 0; /* # lines starting with)BLANK */
STATINFO.LINES.PROLOG = 0; /* # lines before 1st noncomment */

/**/
STATINFO.STMTS.TOTAL = 0; /* = LINES.TOTAL */
STATINFO.STMTS.COMMENT = 0; /* = LINES.COMMENT */
STATINFO.STMTS.CONTROL = 0; /* # of lines starting with) */
STATINFO.STMTS.ASSIGNMENT = 0; /* = 0 */
STATINFO.STMTS.NON_COMMENT= 0; /* = LINES.NON_COMMENT */

/**/
USED_ELMTS = 0;

/**/
NAMECHRS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789@#$';
PAREN = ')';

END INITIAL;
PARSE: PROC;
/**/
/*** ***/
/*** Routine: PARSE ***/
/*** ***/
/*** Purpose: Parses the skeleton and places the result in the ***/
/*** account record structures whose addresses were ***/
/*** passed to the program. ***/
/*** ***/
/*** Inputs: Skeleton source from ddname SSOURCE. ***/
/*** ***/
/*** Outputs: Parse results in structure STAT_INFO and array ***/
/*** LIST_INFO. ***/
/*** ***/
/*** Logic: 1) Read each record of the skeleton. For each ***/
/*** line read, increment the appropriate ***/
/*** counters. ***/
/*** ***/
/**/

Figure 21. Parser for ISPF Skeletons (Part 4 of 8)

80 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

OPEN FILE(SSOURCE);
EOF = '0'B;
NON_COM_READ = '0'B;
ON ENDFILE(SSOURCE) EOF = '1'B;
GET FILE(SSOURCE) EDIT(RECORD) (A(80));
DO WHILE (¬EOF);

/**/
/*** Perform this loop for each record in the skeleton. ***/
/**/
/*** Increment total line counter. ***/
/**/

STATINFO.LINES.TOTAL = STATINFO.LINES.TOTAL + 1;
/**/
/*** If the line starts with)IM, save the name of the ***/
/*** imbedded member in LIST_INFO in an 'INCL' array element. ***/
/**/

IF SUBSTR(RECORD,1,3) = PAREN ││ 'IM' THEN
DO;
CALL GETNAME;
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN
DO;
LISTINFO(USED_ELMTS).TYPE = 'INCL';
LISTINFO(USED_ELMTS).DATA = NAME;

END;
ELSE;

END;
ELSE;

/**/
/*** If the line starts with)DOT, save the name of the ***/
/*** referenced table in LIST_INFO in a 'USER' array element. ***/
/**/

IF SUBSTR(RECORD,1,4) = PAREN ││ 'DOT' THEN
DO;
CALL GETNAME;
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN
DO;
LISTINFO(USED_ELMTS).TYPE = 'USER';
LISTINFO(USED_ELMTS).DATA = 'TABLE: ' ││ NAME;

END;
ELSE;

END;
ELSE;

/**/
/*** If the line starts with)CM, increment the comment ***/
/*** counter. Otherwise, increment the non-comment counter. ***/
/**/

IF SUBSTR(RECORD,1,3) = PAREN ││ 'CM' THEN
STATINFO.LINES.COMMENT = STATINFO.LINES.COMMENT + 1;

ELSE
STATINFO.LINES.NON_COMMENT = STATINFO.LINES.NON_COMMENT + 1;

Figure 21. Parser for ISPF Skeletons (Part 5 of 8)

Chapter 4. Language Definition Considerations 81

/**/
/*** If the line starts with)BLANK, increment the blank line ***/
/*** counter. ***/
/**/

IF SUBSTR(RECORD,1,6) = PAREN ││ 'BLANK' THEN
STATINFO.LINES.BLANK = STATINFO.LINES.BLANK + 1;

ELSE;
/**/
/*** If the line starts with), increment the control ***/
/*** statement counter. ***/
/*** ***/
/*** If the line does not start with), increment the data ***/
/*** line counter. ***/
/*** ***/
/*** If this is the first data line, then we have reached the end***/
/*** of the prolog (defined here as the comment lines before the ***/
/*** first data line). Set the prolog count to the number of ***/
/*** comments read so far. ***/
/**/

IF SUBSTR(RECORD,1,1) = PAREN THEN
STATINFO.STMTS.CONTROL = STATINFO.STMTS.CONTROL + 1;

ELSE
DO;
IF ¬NON_COM_READ THEN
DO;
STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;
NON_COM_READ = '1'B;

END;
ELSE;

END;
/**/
/*** If this line starts with)DEFAULT, then the special ***/
/*** character (the left parenthesis) for control cards might ***/
/*** have changed. Get the new character. ***/
/**/

IF SUBSTR(RECORD,1,8) = PAREN ││ 'DEFAULT' THEN
DO;
I = VERIFY(SUBSTR(RECORD,9,72),' ') + 8;
PAREN = SUBSTR(RECORD,I,1);

END;
ELSE;

/**/
/*** End of parse-a-line loop. If there's another line, read it ***/
/*** and go back through the loop. ***/
/**/

GET FILE(SSOURCE) EDIT(RECORD) (A(80));
END;
CLOSE FILE(SSOURCE);

/**/
/*** If there were no non-comment lines, then set the number of ***/
/*** prolog lines to the number of comment lines. ***/
/**/

IF ¬NON_COM_READ THEN
STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;

ELSE;
END PARSE;

Figure 21. Parser for ISPF Skeletons (Part 6 of 8)

82 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

GETNAME: PROC;
/**/
/*** ***/
/*** Routine: GETNAME ***/
/*** ***/
/*** Purpose: Returns the name specified on an)IM or)DOT ***/
/*** statement. ***/
/*** ***/
/*** Inputs: An 80-byte record in variable RECORD. ***/
/*** ***/
/*** Outputs: The 8-byte name in variable NAME. ***/
/*** ***/
/*** Logic: 1) Find the first blank after the)IM or)DOT. ***/
/*** 2) Find the next non-blank after that blank. ***/
/*** 3) Move that non-blank and the next 7 bytes into ***/
/*** variable NAME. ***/
/*** ***/
/**/

I = INDEX(RECORD,' ');
I = VERIFY(SUBSTR(RECORD,I,81-I),' ') + I - 1;
NAME = SUBSTR(RECORD,I,8);

END GETNAME;

WRAPUP: PROC;
/**/
/*** ***/
/*** Routine: WRAPUP ***/
/*** ***/
/*** Purpose: Saves the last of the parse information in the ***/
/*** SCLM structures and outputs error messages to ***/
/*** the listing file if the LIST_INFO array was not ***/
/*** large enough to hold all of the information. ***/
/*** ***/
/*** Inputs: None. ***/
/*** ***/
/*** Outputs: More data in LIST_INFO and STAT_INFO. ***/
/*** ***/
/*** Logic: 1) Calculate summary information. ***/
/*** 2) Write an 'END ' element to LIST_INFO. ***/
/*** 3) If there was not enough room in LIST_INFO, ***/
/*** write out messages that describe the error ***/
/*** and that indicate how to solve the problem. ***/
/*** ***/
/**/

STATINFO.STMTS.TOTAL = STATINFO.LINES.TOTAL;
STATINFO.STMTS.COMMENT = STATINFO.LINES.COMMENT;
STATINFO.STMTS.NON_COMMENT = STATINFO.LINES.NON_COMMENT;

Figure 21. Parser for ISPF Skeletons (Part 7 of 8)

Chapter 4. Language Definition Considerations 83

/**/
/* WRITE AN END ELEMENT TO LIST ARRAY */
/**/
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN
DO;
LISTINFO(USED_ELMTS).TYPE = 'END ';
LISTINFO(USED_ELMTS).DATA = ' ';

END;
ELSE
DO;
OPEN FILE(ERROR);

/**/
PUT FILE(ERROR) SKIP LIST(

'ERROR: INFORMATION RESULTING FROM PARSE DOES NOT ' ││
'FIT IN PARSE ARRAYS.');

/**/
PUT FILE(ERROR) SKIP LIST(

' PARSE ARRAY ELEMENTS:', LISTLEN);
/**/

PUT FILE(ERROR) SKIP LIST(
' ELEMENTS NEEDED: ', USED_ELMTS);

/**/
PUT FILE(ERROR) SKIP(2) LIST(

'FIX: 1) INCREASE BUFSIZE VALUE IN FLMLANGL MACRO,');
/**/

PUT FILE(ERROR) SKIP LIST(
' - OR - ');

/**/
PUT FILE(ERROR) SKIP LIST(

' 2) BREAK THIS SKELETON UP INTO SMALLER ' ││
'SKELETONS AND IMBED THEM ');

/**/
PUT FILE(ERROR) SKIP LIST(

' IN A NEW "TOP LEVEL" SKELETON ');
/**/

PUT FILE(ERROR) SKIP(2) LIST(
'PARAMETER LIST: ' ││ PARMLISTX);

/**/
LISTINFO(LISTLEN).TYPE = 'END ';
LISTINFO(LISTLEN).DATA = ' ';

/**/
CLOSE FILE(ERROR);

/**/
RETCODE = 4;

END;
END WRAPUP;
END PSKELS;

Figure 21. Parser for ISPF Skeletons (Part 8 of 8)

84 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Processing Conditionally Saved Components

SCLM provides a feature to handle translators that, by design, have missing or
static outputs. Static outputs help SCLM in its work-avoidance algorithms. Note,
however, that SCLM relies on translator return codes to determine which outputs
are static.

Example of Processing Conditionally Saved Components

Suppose a translator can determine if a developer changed only comments in the
source code and signals that by a return code of 2. The translator creates a listing
output to match the current source. However, creating object code for the source is
unnecessary because comment changes to source do not alter object code. In this
case, the object code is a static output because it did not change. Specifying a
NOSAVRC=2 on the FLMALLOC macro corresponding to the object output
instructs SCLM not to copy object modules back to the hierarchy when the
translator returns a 2. SCLM copies the generated listing back to the hierarchy
when the translator returns a 2, if the object modules already exist in the heirarchy.

/***/
/*** ***/
/*** LISTINFO Structure ***/
/*** ***/
/*** Maps the static portion of the account record. ***/
/*** ***/
/*** The number of elements declared for this array should not ***/
/*** be greater than the value specified on the BUFSIZE keyword ***/
/*** on the FLMLANGL macro. ***/
/*** ***/
/***/

DCL 1 LISTINFO(50) BASED(LIST_PTR),
2 TYPE CHAR(4),
2 DATA CHAR(224);

Figure 22. LISTINFO Module

/***/
/*** ***/
/*** STATINFO Structure ***/
/*** ***/
/*** Maps the static portion of the account record. ***/
/*** ***/
/***/

DCL 1 STATINFO BASED(STAT_PTR),
2 LINES,
3 TOTAL FIXED BIN(31),
3 COMMENT FIXED BIN(31),
3 NON_COMMENT FIXED BIN(31),
3 BLANK FIXED BIN(31),
3 PROLOG FIXED BIN(31),

2 STMTS,
3 TOTAL FIXED BIN(31),
3 COMMENT FIXED BIN(31),
3 CONTROL FIXED BIN(31),
3 ASSIGNMENT FIXED BIN(31),
3 NON_COMMENT FIXED BIN(31);

Figure 23. STATINFO Module

Chapter 4. Language Definition Considerations 85

Components that depend on the object do not need to be rebuilt when only the
listing is regenerated. If you specify DEPPRCS=N on the FLMLANGL macro,
SCLM rebuilds components dependent on a member only if all its outputs were
saved.

Setting Up the Project Definition

To access this feature, use the FLMALLOC, FLMLANGL, and FLMTRNSL macros:
1. Identify the static outputs and their corresponding FLMALLOCs in the

language definition.
2. For each static output:
v List the translator return code that indicates that the output is not to be

saved
v Specify that return code as the NOSAVRC parameter of the FLMALLOC

macro for that output.

The NOSAVRC must have a nonzero positive value. It is only valid for
IOTYPEs O and P.

3. Make sure that the GOODRC on the FLMTRNSL macro corresponding to that
translator is greater than or equal to the highest NOSAVRC parameter you
specified.

4. Determine whether you want SCLM to rebuild components that depend on a
given member only if all its outputs (including the static outputs) were saved.
If that is the case, specify DEPPRCS=N on the FLMLANGL macro. If you
specify DEPPRCS=Y (or let it default to Y), SCLM rebuilds components that
depend on that member whenever the build translator returns a good return
code. In the preceding example, DEPPRCS=Y causes SCLM to rebuild
components that depend on the given member even when only the listing has
changed.

Likewise, the translator can directly store output in an external data set not under
SCLM control. For example, the Ada translator controls output stored in Ada
sublibraries. Under such circumstances, the build function requires a signal from
the translator to detect whether or not some of the external outputs were saved to

FLMLANGL LANG=XYZ,VERSION=V1,DEPPRCS=N
* BUILD TRANSLATOR(S)
*

FLMTRNSL CALLNAM='TRANSLATOR XYZ', C
FUNCTN=BUILD, C
COMPILE=XYZ, C
GOODRC=4

*
* (* SYSIN *)

FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C
RECNUM=1000,DDNAME=SYSIN

* (* SYSPRINT *)
FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=133, C

RECNUM=30000,PRINT=Y,DDNAME=SYSPRINT,DFLTTYP=LISTING
* (* SYSLIN *)

FLMALLOC IOTYPE=O,KEYREF=OBJ,RECFM=FB,LRECL=80, C
RECNUM=5000,DDNAME=SYSLIN,DFLTTYP=OBJ,NOSAVRC=2

Figure 24. Sample Language Definition for Conditionally Saved Components

86 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

external data sets. SCLM uses NOSVEXT on the FLMTRNSL macro in the same
fashion as the parameter NOSAVRC on the FLMALLOC macro to detect whether
or not external outputs were saved.

Specifying the Locations of Included Members

SCLM tracks two pieces of information for each include member that is found by a
parser. The first piece of information is the member name of the include; the
second is the include set that contains the included member. If no include set is
returned by the parser for a member, SCLM assigns that member to the default
include set. The name of the default include set is all blanks.

SCLM does not track an include member if it meets all of the following conditions:
v The language definition for the member specifies CHKSYSLB=PARSE. This is the

default.
v An accounting record for the include is not found by searching the hierarchy for

each type specified on the FLMINCLS for the include set.
v The include is found in one of the data sets specified on an FLMSYSLB macro

for the include set.

Includes that meet these conditions are removed from the list of includes stored in
the accounting record of the member. Because the include is not being tracked,
build and promote do not detect if the include is removed from the FLMSYSLB
data sets or added to the project database.

Build ignores an include if it meets all of the following conditions:
v The language definition for the member specifies CHKSYSLB=BUILD.
v An accounting record for the include is not found by searching the hierarchy for

each type specified on the FLMINCLS for the include set.
v The include is found in one of the data sets specified on an FLMSYSLB macro

for the include set.

Includes that meet these conditions are removed from the list of includes stored in
the build map record of the member. Because the include is not being tracked,
build and promote will not detect if the include has changed since the last build.

The include information is used by build and promote to determine whether the
member is up-to-date. When you build, the includes for an up-to-date member
have the same type, date, time, and version as the last time that member was built.
When you promote, the includes for an up-to-date member have the same date,
time, and version as the last time that member was built. Promote does not search
the types listed on FLMINCLS macros for includes. It relies instead on the
information in the build map to determine the type name of the included member.
If a member is not up-to-date, build attempts to rebuild the member and promote
does not allow the member to be promoted to the next group in the hierarchy.

An include set is used to associate an included member name with the type or
types in the project that are searched to find a member with that name. The
FLMINCLS macro is used to associate an include set with one or more types in the
project definition. Types are searched in the order listed on the FLMINCLS macro.
Each type is searched from the current group to the top of the hierarchy before the
next type in the list is searched.

Chapter 4. Language Definition Considerations 87

The number of include sets used by a language is usually related to the number of
include ddnames supported by the build translators for that language, where the
includes are located in project data sets. If the build translator only supports one
include ddname, a single include set is sufficient for that language. On the other
hand, if there are multiple build translators, each supporting an include ddname
and the includes are separated into different types for each build translator,
multiple include sets would be needed.

If multiple include sets are needed, parsers must return the appropriate include set
for each include.

Example

This example shows how pieces of a project might look if it were set up to use
multiple include sets.

The following list shows the different types of includes in the project and the
location of each include type in the project data sets.

Include Type Project Types and SYSLIB Data sets to Search

Constants CONSTANT

Messages INCLENGL, INCLUDE, PRODX.MSGLIB (syslib
data set)

SQL Declarations DCLGEN, source member’s type, source member’s
extended type

All other includes INCLUDE, source member’s type, source member’s
extended type, SYS1.SEDCHDRS (syslib data set)

Figure 25 shows how the include section of a source member might be coded:

The parser must return the following:

Member include set
STDIO
SQLDEF1 SQL
PROG1 MESSAGE
COMMON CONSTANT
PROG1 CONSTANT

You could then use the language definition in Figure 26 on page 89 for this
member.

#include <stdio> /* C standard i/o */
EXEC SQL INCLUDE SQLDEF1; /* SQL definitions */
#include "DD:MESSAGE(prog1)" /* prog1 specific messages */
#include "DD:CONSTANT(common)" /* common constants */
#include "DD:CONSTANT(prog1)" /* prog1 specific constants */

Figure 25. Source member with includes in different include sets

88 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

* C370 W/DB2 LANGUAGE DEFINITION FOR PROJECT X *
* *

*
CDB2 FLMSYSLB SYS1.SEDCHDRS
*

FLMLANGL LANG=CDB2,VERSION=V1,ALCSYSLB=Y*
* CONSTANT INCLUDES
*
CONSTANT FLMINCLS TYPES=(CONSTANT)*
* MESSAGE INCLUDES
*
MESSAGE FLMINCLS TYPES=(INCLENGL,INCLUDE)*
* SQL INCLUDES
*
SQL FLMINCLS TYPES=(DCLGEN,@@FLMTYP,@@FLMETP)*
* ALL OTHER INCLUDES - DEFAULT INCLUDE SET
*

FLMINCLS TYPES=(INCLUDE,@@FLMTYP,@@FLMETP)*
* PARSER TRANSLATOR
*

FLMTRNSL CALLNAM='C370 REXX PARSER', C
FUNCTN=PARSE, C
COMPILE=MYCPARSE, C
DSNAME=SOMEUSR.PARSER.LOAD, C
CALLMETH=TSOLNK, C
PORDER=1, C
OPTIONS=(LISTSIZE=@@FLMSIZ, C
LISTINFO=@@FLMLIS, C
STATINFO=@@FLMSTP)

* (* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)*

* BUILD DB2 PREPROCESSOR TRANSLATOR
*
* --DB2 PREPROCESSOR INTERFACE--

FLMTRNSL CALLNAM='DB2 C PREP', C
FUNCTN=BUILD, C
COMPILE=DSNHPC, C
VERSION=D220, C
GOODRC=4, C
PORDER=3, C
OPTIONS=(HOST(C),APOST)

Figure 26. Language definition to support multiple include sets (Part 1 of 4)

Chapter 4. Language Definition Considerations 89

* 1 -- N/A --
FLMALLOC IOTYPE=N

* 2 -- N/A --
FLMALLOC IOTYPE=N

* 3 -- N/A --
FLMALLOC IOTYPE=N

* 4 -- SYSLIB --
FLMALLOC IOTYPE=I,INCLS=SQL

* 5 -- SYSIN --
FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C

RECNUM=5000
* 6 -- SYSPRINT --

FLMALLOC IOTYPE=W,RECFM=FBA,LRECL=133, C
RECNUM=35000,PRINT=Y

* 7 -- N/A --
FLMALLOC IOTYPE=N

* 8 -- SYSUT1 --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 9 -- SYSUT2 --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 10 -- SYSUT3 --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 11 -- N/A --
FLMALLOC IOTYPE=N

* 12 -- SYSTERM --
FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

* 13 -- N/A --
FLMALLOC IOTYPE=N

* 14 -- SYSCIN --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C

RECNUM=9000,DDNAME=DB2TRANS
* 15 -- N/A --

FLMALLOC IOTYPE=N
* 16 -- DBRMLIB--

FLMALLOC IOTYPE=P,DDNAME=DBRMLIB,MEMBER=@@FLMONM, C
DFLTTYP=DBRM,KEYREF=OUT1, C
RECFM=FB,LRECL=80,RECNUM=5000,DIRBLKS=1

*
* BUILD C370 TRANSLATOR
*

FLMTRNSL CALLNAM='C 370', C
FUNCTN=BUILD, C
COMPILE=EDCCOMP, C
DSNAME=SYS1.SEDCCOMP, C
VERSION=C210, C
GOODRC=0, C
PORDER=3, C
OPTIONS=(XREF,LANGLVL(SAAL2),SOURCE,OPT,TEST(ALL), C
MARGINS(1,72),NOGONUM,NOTERMINAL,FLAG(I),SHOWINC)

Figure 26. Language definition to support multiple include sets (Part 2 of 4)

90 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

*
* 1 (* SYSIN *)

FLMALLOC IOTYPE=U,DDNAME=DB2TRANS
*
* 2 (* SYSLIN *)

FLMALLOC IOTYPE=O,KEYREF=OBJ,RECFM=FB,LRECL=80, C
RECNUM=5000,DFLTTYP=OBJ

*
* 3 (* SYSMSGS *)

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.SEDCMSGS(EDCMSGE)

*
* 4 (* SYSLIB *)

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.SEDCHDRS

*
* 5 (* USERLIB *)

FLMALLOC IOTYPE=I
*
* 6 (* SYSPRINT *)

FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

*
* 7 (* SYSCPRT *)

FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=137, C
RECNUM=20000,PRINT=Y,DFLTTYP=LIST

*
* 8 (* SYSPUNCH *)

FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

*
* 9 (* SYSUT1 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000
*
* 10 (* SYSUT4 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000
*
* 11 (* SYSUT5 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000*
* 12 (* SYSUT6 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000
*
* 13 (* SYSUT7 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000
*
* 14 (* SYSUT8 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000
*
* 15 (* SYSUT9 *)

FLMALLOC IOTYPE=W,RECFM=VB,LRECL=137,RECNUM=2000

Figure 26. Language definition to support multiple include sets (Part 3 of 4)

Chapter 4. Language Definition Considerations 91

Dynamic Include Tracking

The SCLM build processor attempts to resolve all include references to source
members before it invokes any translator. However, for some translators, the
include for a source member cannot be resolved until after the translator
invocation. Such includes are referred to as dynamic includes. SCLM can track
dynamic includes if the dynamic includes for a member can be altered only by
modification of the member or one of the included members.

To support dynamic includes, SCLM invokes an additional build translator step
(FLMTRNSL macro) following the translator that produces the output data set
containing a list of dynamic includes. This additional translator should parse the
output data set for dynamic includes and store them in memory supplied by the
build processor. You pass the address of this memory to the translator by
specifying the SCLM variable @@FLMINC in the translator options (OPTION
parameter on FLMTRNSL macro). @@FLMINC is a pointer to a set of includes relating
to a specified member. The value of @@FLMINC is a string of decimal characters that
you must convert to a fullword binary value before using it as an address. The
following record layout is used to store the dynamic includes:

You must specify the number of dynamic includes in the first 4 bytes as a fullword
binary integer, followed by the list of dynamic include member and type names.
The amount of memory that the SCLM build processor supplies limits the number
of dynamic includes to 1000. Be sure to remove any duplicate include references.

*
* 16 (* SYSUT10 *)

FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

*
* (* CONSTANT *)

FLMALLOC IOTYPE=I,DDNAME=CONSTANT,INCLS=CONSTANT
*
* (* MESSAGE *)

FLMALLOC IOTYPE=I,DDNAME=MESSAGE,INCLS=MESSAGE

Figure 26. Language definition to support multiple include sets (Part 4 of 4)

COUNT : 4 bytes
TYPE1 : 8 bytes
MEMBER1 : 8 bytes
TYPE2 : 8 bytes
MEMBER2 : 8 bytes

.

.

.
TYPE# : 8 bytes
MEMBER# : 8 bytes

92 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Input List Translators

SCLM provides support for Build translators that operate on more than one source
member in a single invocation. This type of translator is known as an input list
translator. SCLM users can use existing translators that support this feature or
write new user-defined translators to take advantage of the feature. The IBM
Ada/370 Compiler is the only SCLM-supported translator that can use input lists.

The SCLM Input List feature can increase the performance of an SCLM Build.
Instead of SCLM calling a translator once for each member to be built, SCLM calls
the translator passing a list of members to be built. SCLM attempts to place as
many members as possible on each input list, thereby limiting the number of
translator invocations. The project manager specifies the maximum number of
members passed to a translator on an invocation in the language definition that
includes the translator. This feature is most useful when using translators that have
a high startup overhead to run. Fewer invocations mean increased speed for the
SCLM Build process.

An input list translator receives a file that contains a list of data sets that a Build
action is performed against. It returns a file that contains a return code for each
data set in the input list and, optionally, a set of unique outputs for each data set
in the input list.

Two translators, FLMTPRE and FLMTPST, serve as the interfaces between SCLM
and the input list translator.
v The FLMTPRE translator generates a list of data sets that an input list translator

can use as input.
v The FLMTPST translator passes the return code information that an input list

translator provides for every data set on the input list back to SCLM.

Refer to the SCLM Reference for more information on FLMTPRE and FLMTPST.

Note: The input list feature of the Build function is designed to work with direct
translations of source members only (source members referenced with an
INCLD statement). Using the input list feature with source members
controlled by CC or Generic architecture definitions will produce undefined
results (source members referenced with a SINC statement).

Configuring the Input List Translators

Use the following macros to configure the input list translators to fit your needs:
v FLMLANGL

Set the following parameters:
– INPLIST=Y
– MBRLMT to the maximum number of members that can be included in the

same invocation of the translator.
– SLOCLMT to the maximum number of source lines to be processed on a

single invocation of the translator.
v FLMTRNSL

Set the following parameters:
– INPLIST=Y

Chapter 4. Language Definition Considerations 93

– MBRRC to the maximum good return code for each member in the input list.
MBRRC defaults to 0 and is optional.

v FLMALLOC
Set the following parameters:
– MALLOC to designate which outputs of a translator have multiple unique

instances.
– IOTYPE to O or P.

SCLM only saves outputs with IOTYPE=O in the hierarchy. For IOTYPE=O,
you must also specify the FLMCPYLB macro and the data set name on
FLMCPYLB must contain the @@FLMMBR variable somewhere in the
variable string to enable SCLM to find the member-specific outputs. When
IOTYPE=O is specified, the input list translator is expected to allocate the
output data sets necessary for each member.
Temporary data sets allocated with IOTYPE=P can be used as work data sets
for the translators, but they cannot be stored in the hierarchy.

– ALLCDEL to designate which output data sets were defined by the translator
and should be deleted by SCLM.

Defining a New Language to SCLM

This section describes the control structures used to manage SCLM processes and
illustrates how to define a new language to SCLM. An example is included to
show the statements needed to define the control structures and SCLM macros.
The example refers to a fictitious compiler, the Finnoga 4, to show how to gather
the information you need and how to specify that information to SCLM in the
form of language definition macros.

Using DDnames and DDname Substitution Lists

Many translators support a ddname substitution list; this contains ddnames, which
are passed as a parameter to the translator. In Figure 29 on page 110, the ddname
in position 5 is the ddname from which the compiler reads the source to be
compiled. The ddname occupying that position in the ddname substitution list is
usually called SYSIN. You can override the default ddname by placing another
ddname in position 5 of the ddname substitution list. The compiler then reads
from the other ddname. Table 10 on page 95 lists the various ddnames used by the
Finnoga 4 compiler described in this example. The position number indicates the
position of the ddname in a ddname substitution list. In addition, Table 10 on
page 95 gives a brief description of the data sets allocated to the ddnames.

Note that some position numbers do not have a ddname associated with them.

SCLM allows a maximum of 512 characters for the ddname substitution list.
Because every FLMALLOC for a given translator causes an 8-character ddname to
be put into the ddname substitution list, when the PORDER > 1, a given translator
may have a maximum of 64 FLMALLOCs.

Ddname substitution lists are usually documented in the programming guide for
specific compilers and linkage editors. Note that it is rare for two different
compilers to have the same ddname substitution list mappings.

Compilers are not required to support a ddname substitution list in order to be
defined to SCLM. However, ddname substitution list support makes it easy to link

94 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

or string two different compilers or preprocessors together. In “Defining a
Preprocessor to SCLM” on page 107, you will see how a ddname substitution list is
used to pass the outputs of a preprocessor to a compiler.

Compiler Options

Assume that there are four Finnoga 4 compiler options that you can use:
v SOURCE or NOSOURCE
v MACRO or NOMACRO
v OPTIMIZE or NOOPTIMIZE
v OBJ().

It is not critical at this point to understand what these options mean to the
compiler, just which options are to be used for each compile. You should always
specify SOURCE, NOMACRO, and OBJ(), but you must specify the OPTIMIZE
parameter on a module-by-module basis.

Table 10. DDname Substitution List Example

Position Number DDname Description of data set(s)
allocated

1 SYSLIN A partitioned data set into
which the Finnoga 4 compiler
writes the object module. The
OBJ keyword in the
compiler’s option string
specifies the member name to
use.

2 <none> <none>

3 <none> <none>

4 SYSLIB One or more partitioned data
sets through which the
Finnoga 4 compiler searches
for INCLUDE members.

5 SYSIN A sequential data set that
contains Finnoga 4 source to
be compiled.

6 SYSPRINT A sequential listings data set.
The Finnoga 4 compiler
writes out a copy of the
source that was compiled
along with any error,
warning, and informational
messages.

7 <none> <none>

8 FINLIB A data set that contains
information needed by the
Finnoga 4 compiler. This data
set comes with the compiler.

9 <none> <none>

10 SYSUT1 A sequential work data set.

11 SYSUT2 A sequential work data set.

Chapter 4. Language Definition Considerations 95

Defining a New Language: Step-by-Step

The following list briefly describes the process required to write a new SCLM
language definition:
1. Define the language name to SCLM.
2. Define include-sets for the language to identify the locations of included

members.
3. List the various programs (parsers, compilers, and so on) used to parse and

build your source.
4. For each program (or translator), look up the ddname substitution list (usually

in the Programmer’s Guide for the compiler), or list the ddnames used by the
program.

5. For each program or translator, write an FLMTRNSL macro followed by
FLMALLOC macros (one for each ddname to be allocated for the translator).
Use the information in the program documentation to determine which
IOTYPE value to specify as well as which other FLMALLOC keywords are
appropriate.

6. Write a sample architecture definition and send it to your users. Describe to
your users how to convert a JCL file of linkage editor control statements into
architecture definitions.

7. Place the application under SCLM control.

This section is an illustration of the process for defining a language to SCLM. As
you progress through the definition, you will code SCLM macros with the
information SCLM needs to control Finnoga 4 modules. You will place this code
into a member of the PROJDEFS.SOURCE data set called @FINNOGA. Language
definitions such as @FINNOGA are usually referenced in the code for a project
definition by means of the COPY statement.

Step 1.
Define the language.

The first step is to tell SCLM that you are defining a new language. To do
so, code the following FLMLANGL macro:

FLMLANGL LANG=FINNOGA,VERSION=FINN4

In this example, values are specified for two parameters. The default
values are used for the other parameters.

Parameter Description

LANG= Specifies the language name a user must
enter on the SPROF panel or on the
Migrate Utility panel to request that this
language definition be used to drive build
and parse operations of the Finnoga 4
modules.

VERSION= Identifies the specific release of the current
Finnoga 4 compiler. If you install a new
release or version of the Finnoga 4
compiler, you can set this parameter to a
different value so that SCLM can mark all
Finnoga 4 modules needing to be rebuilt.
You must then re-assemble and link your
project definition.

96 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Step 2.
Define include sets for the language to identify the locations of included
members.

After the language is defined, you can specify where SCLM finds included
members for the Finnoga 4 language. In the following example, the
FLMINCLS macro is used to list the types that are searched for includes:

FLMINCLS TYPES=(INCLUDE,@@FLMTYP)

In this example, the TYPES parameter of the FLMINCLS macro is used to
tell SCLM where to look for includes. Since no name is specified, this
definition applies to the default include set.

Parameter Description

FLMINCLS name Specifies the name of the include set that
uses this definition. If no name is specified
(as in this example), the definition is
associated with the default include set. An
include set defines a search path for all
includes associated with that include set.
Multiple include sets can be specified in a
language definition if the parser and
compiler support distinguishing one kind
of include from another. For the parser, this
means that the syntax of the language must
support determining which include set an
include belongs to. For the compiler, this
means that a separate ddname must be
used for each different include set (kind of
include).

Two include sets are useful when the
standard language includes are kept in one
Type and the “EXEC SQL” includes are
kept in another Type. A parser can be
written to determine which include set
each include is in. The language definition
then associates a ddname from the build
translators with the appropriate include set
name.

TYPES= Specifies the name(s) of the types which
are searched to find includes. In this case,
the “INCLUDE” type is searched first. The
@@FLMTYP SCLM variable indicates that
the type of the member that is processed
by the Finnoga 4 compiler is to be searched
next. For example, if
’EXAMPLE.USERX.SOURCE(PROGA)’ is
going to be compiled, SCLM looks for
includes first in the datasets associated
with the INCLUDE type and then the
SOURCE type.

Step 3.
Specify the programs that process the modules.

Chapter 4. Language Definition Considerations 97

Next, identify the programs that are used to parse and build the Finnoga 4
modules. There are usually two such programs: a parser and the compiler.
For each of these programs, code an FLMTRNSL macro and the
appropriate FLMALLOC macros and FLMCPYLB macros.

Assume that you have written your own parser and that it is in the data
set SCLM.PROJDEFS.LOAD(FINPARSE). The parser requires an option
string @@FLMSIZ,@@FLMSTP,@@FLMLIS, and reads the source from
ddname SOURCE.

Add this to your language definition:
FLMTRNSL CALLNAM='FINNOGA PARSER', C

FUNCTN=PARSE, C
COMPILE=FINPARSE, C
DSNAME=SCLM.PROJDEFS.LOAD, C
PORDER=1, C
OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

The parameters included in this example are described as follows:

Parameter Description

CALLNAM= A character string that appears in messages during
the specified FUNCTN (in this case PARSE). This
value will assist in recognizing which translator
was executing during the specified FUNCTN.

FUNCTN= The value PARSE tells SCLM that this program is
to be invoked whenever you parse a module with
language FINNOGA.

COMPILE= Member name of the load module for the Finnoga
4 parser. Note that the keyword ″COMPILE″
actually identifies the load module name of a
translator (which may or may not be a compiler).

DSNAME= Names the partitioned data set that contains the
Finnoga 4 parser load module. DSNAME is
required when the data set containing the desired
module is not in the system concatenation.
DSNAME is similar to a STEPLIB.

When more than one data set is to be searched, the
TASKLIB parameter can be used in conjunction
with, or as a replacement for, the DSNAME
parameter.

PORDER= The value 1 tells SCLM that this program expects
an options string but not a ddname substitution
list.

OPTIONS= Specifies the options string to be passed to the
parser. Strings that start with @@FLM are SCLM
variables, and they are replaced by their current
values before the string is passed to the parser.

Since the parser reads its source from a ddname, you must tell SCLM how to
allocate that ddname. To do this, use an FLMALLOC macro and an FLMCPYLB
macro.
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

98 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

A description of the parameters follows:

Parameter Description

IOTYPE=A Tells SCLM to allocate a ddname to one, or a
concatenation of, specific data set(s). Each of those
data sets are subsequently identified by using an
FLMCPYLB macro.

DDNAME= Identifies the ddname to be allocated.

@@FLMDSN(@@FLMMBR) Identifies the member to be parsed. When the two
SCLM variables are resolved, you get the member
of the data set in which you are interested.

Now you can tell SCLM how to invoke the Finnoga 4 compiler. To do so, use an
FLMTRNSL macro followed by one or more FLMALLOC and FLMCPYLB macros.
FLMTRNSL CALLNAM='FINNOGA 4', C

FUNCTN=BUILD, C
COMPILE=FNGAA40, C
PORDER=3, C
GOODRC=0, C
OPTIONS='SOURCE,NOMACRO,OBJ(@@FLMMBR),', C
PARMKWD=PARM1

You can specify only a few of the parameters and let SCLM supply default values
for the others:

Parameter Description

CALLNAM= Names the compiler. This name appears in build
messages.

FUNCTN= Tells SCLM that this program gets invoked
whenever you want to build a member with
language FINNOGA.

COMPILE= Identifies the load module name for the Finnoga 4
compiler.

DSNAME= If you do not specify a DSNAME value, SCLM
assumes that the load module can be found in the
system concatenation.

PORDER= The value 3 tells SCLM to pass an options string
and a ddname substitution list to the Finnoga 4
compiler.

GOODRC= The value 0 indicates that SCLM is to consider this
build unsuccessful if the compiler completes with
any return code greater than 0.

OPTIONS= Specifies the options string to be passed to the
compiler. At compiler run time, the SCLM variable
@@FLMMBR is resolved to the member name
being built.

PARMKWD= The value PARM1 specifies the concatenation of the
contents of the PARM1 parameters in the
architecture definition to the preceding options
string. Use the PARM1 parameter to specify the
OPTIMIZE/NOOPTIMIZE option for each member.
An example of this is provided later in this section.

Chapter 4. Language Definition Considerations 99

As discussed previously, the Finnoga 4 compiler uses 7 ddnames and also supports
a ddname substitution list. The preceding parser invocation definition showed how
to define a translator (the parser) that does not use a ddname substitution list. The
following SCLM FLMALLOC macros are used by SCLM to construct the ddname
substitution list shown in Table 10 on page 95.

When you use a ddname substitution list, you must define the ddnames in the
order in which they are expected to appear in the ddname substitution list by the
translator. The first ddname defined is placed by SCLM into position 1 in the
ddname substitution list. The second ddname specified is placed into position 2 in
the ddname substitution list, and so on.

Note that you do not have to specify any ddnames in the following example
macros. SCLM will create temporary unique ddnames and place them into the
ddname substitution list positions. Because of the way ddname substitution lists
work, the compiler uses those temporary ddnames instead of the standard
documented ddnames (like SYSIN).

The first ddname in the Finnoga 4’s ddname substitution list is SYSLIN. It is
allocated to a partitioned data set into which the compiler places the object
module.
FLMALLOC IOTYPE=P,KEYREF=OBJ,DFLTTYP=OBJ,RECFM=FB,LRECL=80, C

RECNUM=5000

The parameters specified in this macro are described as follows:

Parameter Description

IOTYPE=P The compiler is written in such a way that a
partitioned data set must be allocated to this
ddname. The compiler will write to a member of
this partitioned data set. SCLM creates a temporary
PDS and allocates it to a temporary ddname (since
no DDNAME keyword was specified).

This example illustrates two points. It shows how
to define a temporary PDS for output from a
translator and emphasizes that each compiler (or
parser) that you define to SCLM may be slightly
different from any other translator you have
defined to SCLM.

Always refer to the translator documentation when
defining a translator to SCLM.

KEYREF=OBJ To save what is written to this ddname and keep it
under SCLM control, SCLM must be able to
determine the member name and the
SCLM-controlled data set name in which it is to
save this output module. If SCLM is building an
architecture definition, it determines the project,
group, type and member as follows:
v The high-level qualifier is the project identifier

that was previously specified.
v The group is the level at which the build is

taking place. The group name is the second
qualifier.

100 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

v SCLM looks at the architecture definition being
built and retrieves the member and type from
the architecture statement associated with the
keyword OBJ. The type name is the third
qualifier.

DFLTTYP=OBJ To save what is written to this ddname and keep it
under SCLM control, SCLM must be able to
determine the member name and the
SCLM-controlled data set name in which it is to
save this output module. If SCLM is building a
source member, it determines the project, group,
type and member as follows:
v The high-level qualifier is the project identifier

that was previously specified.
v The group is the level at which the build is

taking place.
v The type is the value of the DFLTTYP= keyword.
v The member name defaults to the name of the

member being built.

If SCLM is building an architecture definition (and
not a source member directly) then the DFLTTYP=
value is ignored. Instead, SCLM uses the type
associated with the KEYREF= value.

RECFM=FB Specifies the record format of the temporary data
set that SCLM creates. In this example, the record
format is fixed block.

LRECL=80 Specifies the record length, in characters, of the
temporary data set that SCLM creates.

RECNUM=5000 Tells SCLM to allocate enough space in this data
set to hold 5000 records (records that are fixed
block and 80 characters in length).

Positions 2 and 3 in the ddname substitution list are not used. Create two
FLMALLOC macros with IOTYPE=N to tell SCLM to fill those name fields with
hex zeros and to continue to the next ddname.
FLMALLOC IOTYPE=N
*
FLMALLOC IOTYPE=N

The ddname in position 4 of the ddname substitution list must be allocated to one
or more partitioned data sets. This ddname is used by the Finnoga 4 compiler to
find included members. The FLMINCLS macro described earlier needs to be
referenced here to ensure that the compiler is picking up includes from the correct
data sets. Since IOTYPE=I allocations default to the default include set shown
earlier, this is automatically done. If another name was used on the FLMINCLS
macro, that name needs to be referenced here using the INCLS parameter.
IOTYPE=I allocates a ddname with a concatenation of all the PDS’s in the
hierarchy starting with the group specified for the BUILD and ending with the top,
or production level, group. First the hierarchy for the INCLUDE type is allocated,
followed by the type of the first SINCed member from the architecture definition,
or, if no architecture definition is used, the type of the member being built.
FLMALLOC IOTYPE=I,KEYREF=SINC

Chapter 4. Language Definition Considerations 101

The parameters used with this macro are as follows:

Parameter Description

IOTYPE=I Allocate this ddname to a concatenation of
SCLM-controlled data sets. The types used in the
concatenation are determined by the FLMINCLS
macro referenced by the INCLS= parameter on the
FLMALLOC macro. In this case, there is no
INCLS= parameter so the default FLMINCLS (or
include set) is used.

A hierarchy of datasets is concatenated for each
type specified for the referenced FLMINCLS macro.
The hierarchy begins at the group where the build
is taking place and extends to the top of the
project’s hierarchy. In this case, the concatenation
first contains all of the data sets for the INCLUDES
type followed by the data sets for the value
substituted into the @@FLMTYP variable. See the
KEYREF= parameter to determine the value which
is substituted into the @@FLMTYP and @@FLMETP
variables.

KEYREF=SINC If you are building an architecture definition, refer
to the first SINC statement in that architecture
definition for the type that is substituted into the
@@FLMTYP macro. The value for @@FLMETP
comes from the EXTEND= parameter of the
FLMTYPE macro for that type. If you are not
building an architecture definition, the type is the
type of the member being built.

The next ddname in the ddname substitution list is allocated to the source to be
compiled:
FLMALLOC IOTYPE=S,KEYREF=SINC

The parameters used in the example are as follows:

Parameter Description

IOTYPE=S Tells SCLM to allocate a temporary sequential data
set.

KEYREF=SINC If you are building a source module directly, SCLM
copies that member to this temporary data set. If
you are building a CC architecture definition,
SCLM copies the members listed on the SINC
statement to this data set.

Next, define the SYSPRINT ddname to SCLM.
FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=125, C

RECNUM=5000,PRINT=Y,DFLTTYP=FINLIST

This definition contains the following parameters:

Parameter Description

IOTYPE=O Specifies that the compiler writes to this ddname
using a sequential data set. SCLM creates a

102 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

temporary sequential data set and allocates it to a
temporary ddname (since this is part of a ddname
substitution list).

KEYREF=LIST Refers SCLM to the LIST record in the architecture
definition being built. That record contains the
member name and type into which the listing is
saved after a successful build. (SCLM copies the
data from the temporary data sets into members of
the PDS’s controlled by SCLM after a successful
build.)

DFLTTYP=FINLIST Specifies the data set type into which this listing is
written whenever a Finnoga 4 module is built
directly or when using INCLD in an architecture
definition.

PRINT=Y Specifies that this is a listing that should be copied
to the Build List data set after the build process
completes.

Although the next position in the ddname substitution list is not used, you still
need to tell SCLM what to put there. Create another FLMALLOC with IOTYPE=N:

FLMALLOC IOTYPE=N

Next, specify the FINLIB data set allocation to SCLM. Specifically, indicate that the
Finnoga 4 library resides in a data set named SYS1.FINNOGA.LIB:

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.FINNOGA.LIB

Finally, note that position 9 in the ddname substitution list, like position 7, is not
used:

FLMALLOC IOTYPE=N

The last two ddnames in the ddname substitution list for the Finnoga 4 compiler
are temporary work data sets. Use IOTYPE=W for temporary work data sets, such
as SYSUT1, SYSUT2, and so on. In addition, specify the record format and length
of the two files, as shown in the following example:
FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
*
FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

When you have completed all the steps described previously, you will have a
language definition similar to the following one. (This language definition contains
comments to explain the flow of operations.) When you are ready to reassemble
your project definition, add a COPY statement in your main project definition file
to pull in these macros.

Chapter 4. Language Definition Considerations 103

**
* FINNOGA 4 LANGUAGE DEFINITION
**
*

FLMLANGL LANG=FINNOGA,VERSION=FINN4
*
**
* TYPES TO SEARCH FOR INCLUDES
**
*

FLMINCLS TYPES=(INCLUDE,@@FLMTYP)
*
**
* PARSE TRANSLATOR DEFINITION
**
*

FLMTRNSL CALLNAM='FINNOGA PARSER', C
FUNCTN=PARSE, C
COMPILE=FINPARSE, C
DSNAME=SCLM.PROJDEFS.LOAD, C
PORDER=1, C
OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

*
* -- SOURCE --
*

FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

**
* BUILD TRANSLATOR DEFINITION
**
*

FLMTRNSL CALLNAM='FINNOGA 4', C
FUNCTN=BUILD, C
COMPILE=FNGAA40, C
GOODRC=0, C
PORDER=3, C
OPTIONS='SOURCE,NOMACRO,OBJ(@FLMMBR),', C
PARMKWD=PARM1

*
* -- (1) OBJECT
*

FLMALLOC IOTYPE=P,KEYREF=OBJ,DFLTTYP=OBJ,RECFM=FB,LRECL=80, C
RECNUM=5000

*
* -- (2) NOT USED
*

FLMALLOC IOTYPE=N
*
* -- (3) NOT USED
*

FLMALLOC IOTYPE=N
*
* -- (4) INCLUDE LIBRARIES
*

FLMALLOC IOTYPE=I,KEYREF=SINC
*
* -- (5) SOURCE
*

FLMALLOC IOTYPE=S,KEYREF=SINC
*
* -- (6) LISTING
*

FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=125, C
RECNUM=5000,PRINT=Y,DFLTTYP=FINLIST

Figure 27. Finnoga 4 Language Definition (Part 1 of 2)

104 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Showing Users How to Write CC Architecture Definitions

Once you have written the language definition, and assembled and link-edited the
project definition, your users can use SCLM to build their Finnoga 4 applications.
To do so, however, they must know what information to supply in their
architecture definitions. Table 11 lists the SCLM-controlled inputs and outputs for
the Finnoga 4 build. It includes the ddnames of the data sets that are input to and
output from the Finnoga 4 compiler. In addition, a KEYREF value and brief
description of each ddname is given.

Table 11. DDnames and KEYREFs

ddname KEYREF Description of data set(s)
allocated

SYSLIN OBJ A partitioned data set into
which the Finnoga 4 compiler
writes the object module. The
OBJ keyword in the
compiler’s option string
specifies the member name to
use.

SYSLIB SINC One or more partitioned data
sets through which the
Finnoga 4 compiler searches
for include members.

SYSIN SINC A sequential data set that
contains Finnoga 4 source to
be compiled.

*
* -- (7) NOT USED
*

FLMALLOC IOTYPE=N*
* -- (8) FINNOGA COMPILER LIBRARIES
*

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.FINNOGA.LIB

*
* -- (9) NOT USED
*

FLMALLOC IOTYPE=N
*
* -- (10) WORK FILE
*

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
*
* -- (11) WORK FILE
*

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
*
*5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 27. Finnoga 4 Language Definition (Part 2 of 2)

Chapter 4. Language Definition Considerations 105

Table 11. DDnames and KEYREFs (continued)

ddname KEYREF Description of data set(s)
allocated

SYSPRINT LIST A sequential listings data set.
The Finnoga 4 compiler
writes out a copy of the
source that was compiled
along with any error,
warning, and informational
messages.

In addition, the PARM1 parameter is used in the FLMTRNSL macro for the
Finnoga 4 compiler.

When your users write CC architecture definitions for their Finnoga 4 applications,
they must include each of the preceding KEYREFs. A typical Finnoga 4 CC
architecture definition looks like this:
SINC PROG SOURCE
SINC SUB1 SOURCE
OBJ PROG OBJ
LIST PROG FINLIST
PARM1 OPTIMIZE

This CC architecture definition, along with the language definition previously
written, tells SCLM to compile the concatenation of Finnoga 4 members PROG and
SUB1 in data set type SOURCE. The resulting object module and listing are to be
saved in data set types OBJ and FINLIST, respectively. When the source is
compiled, you want to use the OPTIMIZE compiler option.

You do not have to specify the modules that are included from ddname SYSLIB.
Simply allocate SYSLIB to the proper libraries (with an IOTYPE=I) and the
compiler will find the included members.

This simple template is all you have to give to your users. When they edit their
Finnoga 4 source, they need to specify FINNOGA as the language name. Then they
create their architecture definitions like the preceding one. SCLM and the language
definition you created will perform the rest of the work.

Convert Your JCL Decks to Architecture Definitions

Suppose your Finnoga 4 users have a library of JCL that they have been using to
compile their Finnoga 4 source. The following example uses a sample Finnoga 4
compile job and shows how you would write an architecture definition with the
information in the JCL. The JCL deck that you use might look like this:
//JOB ...
//FINNOGA EXEC PGM=FNGAA40,
// PARM='SOURCE,NOMACRO,OBJ(PROG1),NOOPTIMIZE'
//SYSLIN DD DSN=USER02.PRIVATE.OBJ,DISP=OLD
//SYSLIB DD DSN=USER02.PRIVATE.FINNOGA,DISP=SHR
//SYSIN DD DSN=USER02.PRIVATE.FINNOGA(MAIN),DISP=SHR
// DD DSN=USER02.PRIVATE.FINNOGA(SUB1),DISP=SHR
// DD DSN=USER02.PRIVATE.FINNOGA(SUB2),DISP=SHR
//SYSPRINT DD SYSOUT=A
//FINLIB DD DSN=SYS1.FINNOGA.LIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,VOL=SER=,DCB=(LRECL=4000,RECFM=F),
// SPACE=(TRK,(10,10))
//SYSUT2 DD UNIT=SYSDA,VOL=SER=,DCB=(LRECL=4000,RECFM=F),
// SPACE=(TRK,(10,10))

106 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

In this example, you want SCLM to control the modules that are input or output
through ddnames SYSIN, SYSLIN, and SYSPRINT. For the Finnoga 4 language
definition, the keywords SINC, OBJ and LIST have been assigned to those
modules. You create the architecture definition by listing the modules involved in
the build and identifying their roles with the keywords SINC, OBJ, and LIST. In
addition, you tell SCLM to concatenate the NOOPTIMIZE option to the end of the
OPTIONS string being passed to the translator using the PARM1 keyword.
SINC MAIN SOURCE
SINC SUB1 SOURCE
SINC SUB2 SOURCE
OBJ PROG1 OBJ
LIST MAIN FINLIST
PARM1 NOOPTIMIZE

Now you are prepared to move this application under SCLM control:
1. Copy the members MAIN, SUB1, and SUB2 from

’USER02.PRIVATE.FINNOGA’ to a development group in the SCLM project
hierarchy. In this example, the data set type is SOURCE. You should also copy
over any included source members.

2. Use the SCLM Migration Utility to migrate your source members using the
language name FINNOGA (the name specified on the FLMLANGL macro).

3. Use the SCLM editor to create the architecture definition. Unless you have
modified the ARCHDEF language definition, the language of this architecture
definition should be ARCHDEF. SCLM asks for the language name when you
first enter the SAVE or END edit command.

Your user is now ready to compile this application using SCLM. The source
members are under SCLM control as are the architecture definitions. The object
module and the Finnoga 4 listing have not yet been created. To build this
application, select Build (option 10.4) from the SCLM Main Menu and enter the
project, group, type, and member name of the architecture definition (archdef).

Defining a Preprocessor to SCLM

Suppose that some of your Finnoga 4 users run a preprocessor step on their
Finnoga 4 source before compiling it. How do you define that two-step build
process to SCLM? Using another fictitious product, the Panda Universal
Preprocessor (PUPP), you can specify that some Finnoga 4 source is to be run
through PUPP before it gets compiled.

Again, you need to list the ddnames used by the translator you want to define. In
this case, assume that PUPP uses three ddnames:

Table 12. DDnames Used by a Hypothetical Preprocessor

DDname Description of file(s) allocated

SYSIN A sequential data set containing the Finnoga
4 source to be preprocessed.

SYSOUT A sequential data set to which the
preprocessed Finnoga 4 source is written.
You want to compile the contents of this data
set.

SYSPRINT A listing data set containing Panda Universal
Preprocessor messages and warnings.

Chapter 4. Language Definition Considerations 107

In this example, the ddnames are not numbered because you will not use the
PUPP ddname substitution list. Instead, you will use the ddname substitution list
supported by the Finnoga 4 compiler to link the two build steps together.

Your users want SCLM to keep the listing data set produced by PUPP, but they do
not want to keep the intermediate copy of the preprocessed source (the output in
SYSOUT). The preprocessed source should be passed to the Finnoga 4 compiler
and then deleted.

Because you want to preprocess some but not all of the Finnoga 4 source, you
should define two different build processes to SCLM. You have already defined the
latter build process (for language FINNOGA), and you will not change that
language definition. For the two-step build process, however, you will create a new
language definition with a different language name. The users must assign the
correct language name to each Finnoga 4 source member.

The new language definition is very much like the first language definition, so you
can copy the first definition into a second PROJDEFS.SOURCE member and
modify it there.

The new language definition (copied from the first definition) has two FLMTRNSL
macros: one for the parser, and the other for the Finnoga 4 compiler. You will add
a third FLMTRNSL for the preprocessor, using the same macros and keywords as
you used in the previous example. Enter this example before the FLMTRNSL for
the Finnoga 4 compiler and after the last FLMALLOC for the parser. The order of
execution is then parse, preprocess, and compile.

The following list describes the keywords that change so you can invoke the new
language definition:

Keyword Description

FUNCTN= Identifies this translator as a build translator. There
are now two build translators in this language
definition: one for PUPP and one for the Finnoga 4
compiler. Define the PUPP translator first and the

FLMTRNSL CALLNAM='PANDA U PREP', C
FUNCTN=BUILD, C
COMPILE=PANDA01, C
GOODRC=0, C
PORDER=1, C
OPTIONS='NOTRACE'

*
* -- SOURCE
*

FLMALLOC IOTYPE=S,KEYREF=SINC,DDNAME=SYSIN
*
* -- PREPROCESSED SOURCE
*

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000, C
DDNAME=SYSOUT

*
* -- LISTING
*

FLMALLOC IOTYPE=O,KEYREF=OUT1,RECFM=VBA,LRECL=125, C
RECNUM=5000,PRINT=Y,DFLTTYP=PUPLIST,DDNAME=SYSPRINT

*

Figure 28. Panda Universal Preprocessor

108 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Finnoga 4 translator second to tell SCLM the order
in which the translators are to be invoked.

OPTIONS= Specifies the options string to be passed to the
PUPP compiler. In this case, you do not want the
trace option activated.

DDNAME= Specify the DDNAME= keyword because you are
not using a ddname substitution list to pass
ddnames to PUPP. This parameter specifies which
ddnames to allocate (the ddnames that PUPP uses).

IOTYPE=W Specifies that ddname SYSOUT is to be allocated as
a work file. In this example, the users do not want
to save the processed source. When the build
completes, this file is deleted. In a later step, this
file gets passed to the Finnoga 4 compiler.

KEYREF=OUT1 Specifies that the listing PUPP writes to ddname
SYSPRINT is to be saved under SCLM control. You
usually use KEYREF=LIST for this purpose.
However, KEYREF=LIST is already being used by
the translator definition for the Finnoga 4 compiler.
Because you have already used the standard set of
CC archdef keywords, you must use the OUTx
keywords.

OUTx keywords are used to identify additional
build outputs. You can use OUT0, OUT1,...,OUT9
to specify additional outputs that SCLM is to
control.

PRINT=Y This listing and the Finnoga 4 listing are both
written to the build listing data set.

Passing the Source to the Compiler

You must next make one change to the macros that define how to invoke the
Finnoga 4 compiler. The source to be compiled no longer comes directly from the
SCLM-controlled source libraries. Instead, you want SCLM to take the
preprocessed source that PUPP writes to ddname SYSOUT and pass it to the
Finnoga 4 compiler. This requires a change to the FLMALLOC macro that defines
the ddname that gets put into the SYSIN position in the ddname substitution list
for the Finnoga 4 compiler. The new macro is illustrated as follows:
*
* -- (5) SOURCE
*

FLMALLOC IOTYPE=U,DDNAME=SYSOUT

You use a different IOTYPE value (IOTYPE=U) to indicate that the ddname to be
placed in the ddname substitution list has already been allocated in a previous
build step. In this case, DDNAME=SYSOUT tells SCLM to place the name SYSOUT
in position 5 of the ddname substitution list and go on to the next ddname. When
the Finnoga 4 compiler runs, it reads the source from ddname SYSOUT.

The new language definition is shown in Figure 29 on page 110. Note that the new
language has been specified on the FLMLANGL macro.

Chapter 4. Language Definition Considerations 109

**
* FINNOGA 4 LANGUAGE DEFINITION
**
*

FLMLANGL LANG=FINPUPP,VERSION=FINN4
*
**

TYPES TO SEARCH FOR INCLUDES
**
*

FLMINCLS TYPES=(INCLUDE,@@FLMTYP)
*
**

* PARSE TRANSLATOR DEFINITION
**
*

FLMTRNSL CALLNAM='FINNOGA PARSER', C
FUNCTN=PARSE, C
COMPILE=FINPARSE, C
DSNAME=SCLM.PROJDEFS.LOAD, C
PORDER=1, C
OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

*
* -- SOURCE --
*

FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

*
**
* BUILD TRANSLATOR DEFINITION
**
*
* PREPROCESSOR STEP
*

FLMTRNSL CALLNAM='PANDA U PREP', C
FUNCTN=BUILD, C
COMPILE=PANDA01, C
GOODRC=0, C
PORDER=1, C
OPTIONS='NOTRACE'

*
* -- SOURCE
*

FLMALLOC IOTYPE=S,KEYREF=SINC,DDNAME=SYSIN
*
* -- PREPROCESSED SOURCE
*

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000, C
DDNAME=SYSOUT

*
* -- LISTING
*

FLMALLOC IOTYPE=O,KEYREF=OUT1,RECFM=VBA,LRECL=125, C
RECNUM=5000,PRINT=Y,DFLTTYP=PUPLIST,DDNAME=SYSPRINT

*
* COMPILE STEP
*

FLMTRNSL CALLNAM='FINNOGA 4', C
FUNCTN=BUILD, C
COMPILE=FNGAA40, C
GOODRC=0, C
PORDER=3, C
OPTIONS='SOURCE,NOMACRO,OBJ(@FLMMBR)', C
PARMKWD=PARM1

Figure 29. Finnoga/PUPP Language Definition (Part 1 of 2)

110 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The following example illustrates an architecture definition to build a program
using two translators:

*
* -- (1) OBJECT
*

FLMALLOC IOTYPE=P,KEYREF=OBJ,DFLTTYP=OBJ,RECFM=FB, C
LRECL=80,RECNUM=5000

*
* -- (2) NOT USED
*

FLMALLOC IOTYPE=N
*
* -- (3) NOT USED
*

FLMALLOC IOTYPE=N
*
* -- (4) INCLUDE LIBRARIES
*

FLMALLOC IOTYPE=I,KEYREF=SINC
*
* -- (5) SOURCE
*

FLMALLOC IOTYPE=U,DDNAME=SYSOUT
*
* -- (6) LISTING
*

FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=125, C
RECNUM=5000,PRINT=Y,DFLTTYP=FINLIST

*
* -- (7) NOT USED
*

FLMALLOC IOTYPE=N
*
* -- (8) FINNOGA COMPILER LIBRARIES
*

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.FINNOGA.LIB

*
* -- (9) NOT USED
*

FLMALLOC IOTYPE=N
*
* -- (10) WORK FILE
*

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
*
* -- (11) WORK FILE
*

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
*
*5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 29. Finnoga/PUPP Language Definition (Part 2 of 2)

Chapter 4. Language Definition Considerations 111

The only difference between this archdef and the Finnoga 4 CC archdef is the
presence of the OUT1 keyword. This keyword specifies the type and member into
which the PUPP listing is saved. In addition to specifying the OUT1 keyword in
their archdefs, users who use this language definition to build their Finnoga 4
source must also remember to specify the language name FINPUPP for that
Finnoga 4 source in the FLMLANGL macro statement.

Converting JCL to SCLM Language Definitions

Many sites use Job Control Language (JCL) to run preprocessors, compilers,
linkage editors, and other tools used in the development process. SCLM supports
developers and project managers through the use of language definitions that tell
SCLM how to parse, build, and promote members of an SCLM-controlled data set.
Language definitions can also specify additional translators to execute for the
COPY, PURGE, and VERIFY functions. Because the SCLM language definitions
provide an easier method of implementing processing control than JCL does, many
sites have found it beneficial to convert their JCL to SCLM language definitions. To
ease the conversion process, SCLM provides sample language definitions that you
can tailor to the special needs of your site.

This section explains how to construct SCLM language definitions to replace
existing JCL decks. Examples illustrate the basic principles underlying a successful
migration from JCL to SCLM and also demonstrate methods for avoiding potential
problems and conflicts.

Before You Begin

Before you attempt to convert your existing JCL decks to SCLM language
definitions, you must obtain and review ″expanded″ listings of the JCL. The
″expanded JCL″ listings allow you to determine the actual values of the symbolic
parameters in the JCL; these values include data set names, options, and other
information that is required for successful translation to an SCLM language
definition. In addition, you will need to know the order in which programs are
executed in the JCL, and the condition codes that are expected from each program.
Your system administrator should be able to help you locate the information that
you need.

You should also review the information provided about SCLM macros in ISPF
Software Configuration and Library Manager (SCLM) Reference paying special attention
to the following macros and their parameters:
v FLMTRNSL
v FLMTCOND
v FLMALLOC
v FLMCPYLB
v FLMINCLS

SINC PROG7 SOURCE
OBJ PROG7 OBJ
LIST PROG7 FINLIST
OUT1 PROG7 PUPLIST
PARM1 NOOPTIMIZE

Figure 30. Architecture Definition Example

112 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

v FLMTOPTS

Capabilities and Restrictions

There are two basic equivalencies that you will use to convert JCL cards to SCLM
macro statements:
v Every JCL EXEC card with PGM=abc will correspond to an FLMTRNSL macro

with COMPILE=abc in your language definition. Conditional execution of
BUILD translators may be addressed through use of the FLMTCOND macro.

v Every JCL DD card will correspond to an FLMALLOC macro and/or an
FLMSYSLB macro associated with an FLMALLOC macro in your language
definition.
In the case of STEPLIB, the JCL DD card will correspond to the DSNAME
parameter in the FLMTRNSL macro. A STEPLIB concatenation of more than one
data set would use the TASKLIB parameter. The TASKLIB parameter is set to the
ddname associated with the data set concatenation. FLMCPYLBs are used to
specify the data sets on an FLMALLOC macro with DDNAME set to the
TASKLIB ddname. When both DSNAME and TASKLIB are specified, the
DSNAME data set is searched first, followed by the TASKLIB data sets, followed
by the system concatenation.
In the case of SYSLIB-type ddnames for a compiler, the data sets must be
specified FLMSYSLBs. Then either ALCSYSLB=Y must be specified on the
FLMLANGL macro and/or FLMCPYLBs must be specified for the appropriate
FLMALLOC macros. For an example of this, refer to the COBOL (FLM@COB2)
or C/370 (FLM@C370) language definitions supplied with SCLM.

Three areas of restrictions can prevent a simple, one-to-one translation of JCL cards
to SCLM macro statements:
v Backward referencing of data definition names (DDs)

If a JCL DD card uses the “refer back” technique to reference a previous DD
card (other than the card in the preceding step), or if a DD card refers to a data
set using a ddname that differs from the data set’s ddname in a prior step,
conversion to an SCLM language definition can involve the use of an
intermediate translator or a ddname substitution list in order to allocate the
correct data set name for the program. (An intermediate translator is not needed
if the succeeding translator supports DDNAME substitution lists; in this case,
the succeeding translator can “hard code” the DDNAME and use IOTYPE=U on
the FLMALLOC macro.)

v Complex conditional execution
A JCL deck that specifies skipping all steps after a specified condition code from
one or more previous steps is directly converted to appropriate FLMTRNSL
macros with appropriate GOODRC values. Other conditional executions of
BUILD translators can be addressed by using the FLMTCOND macro. For
example, if the JCL is set up to run BUILD translator X if any previous return
code is 4, but run Build translator Y if any previous return code is 8, you can
use the FLMTCOND macro. FLMTCOND is only valid for use with BUILD
translators. Conditional execution of non-BUILD translators can require
modification of the translators or interface programs to handle the control of
execution.

v TSO Address Space compatibility
Some programs that run from JCL will not run in the TSO Address Space in
which SCLM resides without a special interface translator. IBM has provided
interface programs for several common IBM programs with this characteristic.

Chapter 4. Language Definition Considerations 113

For example, the FLMTMSI (SCRIPT), FLMTMJI (JOVIAL), and FLMTMMI
(DFSUNUB0) translators all use the TSO Service Facility IKJEFTSR.
If you have JCL that runs program XYZ without any errors, but fails when you
try to run program XYZ from an FLMTRNSL macro, this may be the problem.
You must write a translator to call the program using IKJEFTSR.

The following sections describe how to convert JCL cards and decks into
functionally equivalent SCLM language definitions and provide suggested
strategies for working around restrictions and conflicts.

Converting JCL Cards to SCLM Macro Statements

This section contains examples of JCL decks and their SCLM language definition
equivalents.

Executing Programs

The SCLM FLMTRNSL macro is similar to a JCL EXEC (EXECUTE) card. Figure 31
shows a single JCL card that runs a program named IEFBR14.

Figure 32 shows an SCLM FLMTRNSL macro that performs the same task as the
JCL card in Figure 31.

FLMTRNSL’s COMPILE option specifies the name of the program to execute
(IEFBR14.) The FUNCTN parameter specifies here that IEFBR14 will be invoked
when the user requests a BUILD, and the PORDER value of 0 tells SCLM that
neither an option list nor a ddname substitution list will be passed to IEFBR14.

Figure 33 is a slightly more complicated example. We want to use a translator
program named GAC to copy the contents of TSOSCxx.DEV1.SOURCE(MEMBER1)
into TSOSCxx.DEV1.LIST(MEMBER1). The GAC program itself requires a SYSIN
data set, which is empty in this example.

Figure 34 shows the SCLM language definition that performs the same task as the
JCL in Figure 33.

//STEP1 EXEC PGM=IEFBR14

Figure 31. JCL: Execute IEFBR14

FLMTRNSL COMPILE=IEFBR14,FUNCTN=BUILD,PORDER=0

Figure 32. SCLM: Execute IEFBR14

//STEP1 EXEC PGM=GAC
//SYSIN DD DUMMY
//INPUT DD DSN=TSOSCxx.DEV1.SOURCE(MEMBER1),DISP=SHR
//OUTPUT DD DSN=TSOSCxx.DEV1.LIST(MEMBER1),DISP=SHR

Figure 33. JCL: Execute GAC

114 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

As before, the FLMTRNSL macro is used to specify the name of the program to
run. The FLMALLOC and FLMCPYLB statements allocate the existing data sets to
ddnames.

Conditional Execution

In Figure 35, program XYZ runs only if the return code from program ABC is less
than five.

In SCLM, the GOODRC parameter on the FLMTRNSL macro allows you to specify
return code values for conditional execution. In Figure 36, the GOODRC parameter
for program ABC is set to 4. If ABC ends with a return code greater than four,
processing ends; program XYZ will not execute.

In Figure 37, program XYZ runs only if the return code from program ABC is less
than 5. Program MBS is to execute after program XYZ regardless of the previous
return codes.

In SCLM, the GOODRC parameter on the FLMTRNSL macro specifies when to
skip all remaining translators in the language definition. In Figure 38 the
FLMTCOND macro is used so that execution may skip program XYZ but continue
with program MBS.

FLMTRNSL COMPILE=GAC,FUNCTN=BUILD,PORDER=0
FLMALLOC IOTYPE=A,DDNAME=SYSIN
FLMCPYLB NULLFILE

FLMALLOC IOTYPE=A,DDNAME=INPUT
FLMCPYLB TSOSCxx.DEV1.SOURCE(MEMBER1)

FLMALLOC IOTYPE=A,DDNAME=OUTPUT
FLMCPYLB TSOSCxx.DEV1.LIST(MEMBER1)

Figure 34. SCLM Language Definition: Execute GAC

//STEP1 EXEC PGM=ABC
//STEP2 EXEC PGM=XYZ,COND=(5,GE)

Figure 35. JCL: Conditional Execution

FLMTRNSL COMPILE=ABC,FUNCTN=BUILD,PORDER=0,GOODRC=4
FLMTRNSL COMPILE=XYZ,FUNCTN=BUILD,PORDER=0

Figure 36. SCLM Language Definition: Conditional Execution

//STEP1 EXEC PGM=ABC
//STEP2 EXEC PGM=XYZ,COND=(5,GE)
//STEP3 EXEC PGM=MBS

Figure 37. JCL: Complex Conditional Execution

FLMTRNSL COMPILE=ABC,FUNCTN=BUILD,PORDER=0
FLMTRNSL COMPILE=XYZ,FUNCTN=BUILD,PORDER=0
FLMTCOND ACTION=SKIP,WHEN=(*,GE,5)

FLMTRNSL COMPLIE=MBS,FUNCTN=BUILD,PORDER=0

Figure 38. SCLM Language Definition: Complex Conditional Execution

Chapter 4. Language Definition Considerations 115

Sample JCL Conversion

This section contains commented sample JCL and language definitions that
perform the same tasks: invoking the CICS preprocessor and then invoking the OS
COBOL compiler to produce an object module. Figure 39 on page 119 contains the
JCL used to accomplish these tasks; Figure 40 on page 121 contains the equivalent
SCLM language definition. Each sample contains comments with step numbers.
The step descriptions that follow relate a line or command from the JCL to the
equivalent SCLM language definition macro, option, or command.

1. The JCL has a job step named TRN, which is the first translator called in this
job.
SCLM uses an FLMTRNSL macro to call this translator. This is the first
FLMTRNSL macro for build in the language definition.

2. Job step TRN executes a program called DFHECP$1, the CICS preprocessor
for OS COBOL.
SCLM uses the COMPILE=DFHECP$1 statement on the FLMTRNSL macro.

3. The STEPLIB line in job step TRN tells the job where to find the program
DFHECP$1.
SCLM uses the DSNAME option on the FLMTRNSL macro. Both the STEPLIB
and DSNAME point to the same data set, CICS.V3R2M1.SDFHLOAD.

4. The SYSIN statement defines the data set that contains the member to
compile.
SCLM uses an FLMALLOC macro to allocate the SYSIN data set to a ddname
for the CICS preprocessor. Because we are using PORDER=1, the FLMALLOC
macro assigns the ddname, SYSIN, that the CICS preprocessor is expecting.

5. The TRN job step sends the preprocessor listing to the printer using the
SYSPRINT statement.
SCLM uses an FLMALLOC macro to allocate an output data set to the
ddname SYSPRINT.

6. The SYSPUNCH line in the TRN step creates the output of the CICS
preprocessor and passes it to the next job step (COB) as a temporary file.
SCLM uses an FLMALLOC macro with IOTYPE=W to allocate a work
(temporary) file with the ddname of SYSPUNCH. This work file is passed to
the next job step (FLMTRNSL).

7. The JCL has a job step named COB, which is the second translator called in
this job.
SCLM uses an FLMTRNSL macro to call this translator. This is the second
FLMTRNSL macro for build in our language definition.

8. The job step COB executes (EXEC PGM=) a program called IKFCBL00, the
compiler for OS COBOL.
SCLM uses the COMPILE=IKFCBL00 statement on the FLMTRNSL macro.

9. To pass compiler options to the OS COBOL compiler, the COB job step uses a
PARM= command.
SCLM uses the OPTIONS= statement on the FLMTRNSL macro to perform the
same task.

10. This job has conditional execution for the COB step via the COND(5,GE) JCL
command. The COB step will not execute if the return code of the TRN step is
greater than 4.

116 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

SCLM sets the GOODRC keyword parameter for the TRN step (CICS
preprocessor) equal to 4. Build halts execution of all translators following the
TRN step in the language definition if the return code from the TRN step is
greater than 4.

11. The STEPLIB statement in job step COB tells the job where to find the
program IKFCBL00.
SCLM uses the DSNAME= option on the FLMTRNSL macro. Both the
STEPLIB and DSNAME point to the same data set, IKF.V1R2M4.VSCOLIB.

12. The SYSLIB statement in job step COB tells the job where to find the system
type includes.
The language definition uses the FLMSYSLB macro with IOTYPE=I and the
FLMINCLS macro to do the same task.
SCLM allocates these project data sets allocated for IOTYPE=I before the data
sets on the FLMCPYLB macro(s). ALCSYSLB=Y parameter must be specified
on the FLMLANGL macro to ensure that the FLMSYSLB data sets are
allocated to the IOTYPE=I ddnames.
Because PORDER=3 is being used, the SYSLIB DD is the fourth ddname
passed to the compiler in a ddname substitution list. The COBOL compiler
uses the fourth ddname as SYSLIB no matter what value is assigned to the
DDNAME keyword parameter on the FLMALLOC macro.

13. For each system library specified for the SYSLIB DD, the language definition
has an FLMSYSLB macro. In this case both CICS.V3R2M1.SDFHCOB and
CICS.V3R2M1.SDFHMAC are specified.

14. The COB job step sends the compile listing to the printer using the SYSPRINT
statement.
SCLM uses an FLMALLOC macro to allocate an output data set to the
ddname SYSPRINT.

15. In the COB job step, the SYSIN DD statement identifies the data set that
contains the member to compile. This is the output of the CICS preprocessor
step TRN.
SCLM uses an FLMALLOC macro with IOTYPE=U to refer to a ddname from
a prior step. The language definition instructs MVS to allocate the data set
assigned in the TRN step to the ddname SYSPUNCH.

16. The SYSLIN statement in the COB step identifies the output data set for object
code created by the COBOL compiler.
The language definition uses an FLMALLOC macro with IOTYPE=O to
allocate an output file. This FLMALLOC macro is the first in the COB
FLMTRNSL because when using PORDER=3, the OS COBOL compiler expects
the output data set ddname to be first in a ddname substitution list.

17. The COB step allocates SYSUT1 as a temporary work file for the OS COBOL
compiler.
SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to
perform the same task. This must be the eighth file provided to the OS
COBOL compiler because PORDER=3 tells SCLM that we are using a ddname
substitution list.

18. The COB step allocates SYSUT2 as a temporary work file for the OS COBOL
compiler.
SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to
perform the same task. This must be the ninth file provided to the OS COBOL
compiler because we are using a ddname substitution list.

Chapter 4. Language Definition Considerations 117

19. The COB step allocates SYSUT3 as a temporary work file for the OS COBOL
compiler.
SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to
perform the same task. This must be the tenth file provided to the OS COBOL
compiler because we are using a ddname substitution list.

20. The COB step allocates SYSUT4 as a temporary work file for the OS COBOL
compiler. SCLM’s language definition uses an FLMALLOC macro with
IOTYPE=W to perform the same task. This must be the eleventh file provided
to the OS COBOL compiler because we are using a ddname substitution list.

21. The COB step allocates SYSUT5 as a temporary work file for the OS COBOL
compiler.
SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to
perform the same task. This must be the twelfth file provided to the OS
COBOL compiler because we are using a ddname substitution list.

22. SCLM language definition only

The language definition uses PORDER=3 for the OS COBOL compiler step
(COB) to use a ddname substitution list. A ddname substitution list provides
an ordered list (defined by the translator) of ddnames such that the position of
a ddname in the list, and not the actual ddname, is used by the translator for
a specific file.
The input file for the compiler must be the output file from the CICS
preprocessor. The ddname assigned in the TRN step is SYSPUNCH. Because
this file has already been allocated to SYSPUNCH, another way (besides
ddname) is needed to pass this file as the input to the compiler. By using
PORDER=3, SCLM passes all the files that can be used by the OS COBOL
compiler in the order specified for this compiler. To use PORDER=3, a specific
parameter string must be built. The language definition must have an
FLMALLOC macro for each of these parameters.
Those FLMALLOCs that are tagged for STEP 22 are not applicable for the OS
COBOL compiler. SCLM places 8 bytes of hexadecimal zeros into the ddname
substitution list for each FLMALLOC with IOTYPE=N.

118 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

//USERIDC JOB (AS05CR,T12,C531),'USERID',NOTIFY=USERID,CLASS=A,
// MSGCLASS=O,MSGLEVEL=(1,1)
//*
//* THIS PROCEDURE CONTAINS 2 STEPS
//* 1. EXEC THE CICS PREPROCESSOR
//* 2. EXEC THE OS/VS COBOL COMPILER
//*
//* CHANGE THE JOB NAME AND THE ACCOUNTING INFORMATION TO MEET THE
//* REQUIREMENTS OF YOUR INSTALLATION.
//*
//* CHANGE 'PROGNAME' TO THE NAME OF THE CICS/COBOL PROGRAM YOU
//* WANT TO COMPILE. CHANGE 'USERID' TO YOUR USERID.
//*
//* CHANGE 'DEVLEV' TO THE GROUP THAT CONTAINS THE PROGRAM TO BE COMPILED.
//*
//* STEP 1: TRN STATEMENT; STEP 2: EXEC PGM STATEMENT
//*
//TRN EXEC PGM=DFHECP1$,
//*
//* STEP 3: STEPLIB STATEMENT
//*
// REGION=2048K
//STEPLIB DD DSN=CICS.V3R2M1.SDFHLOAD,DISP=SHR//*
//*
//* STEP 4: SYSIN STATEMENT
//*
//SYSIN DD DSN=USERID.DEVLEV.SOURCE(PROGNAME),DISP=SHR
//*
//* STEP 5: SYSPRINT STATEMENT
//*
//SYSPRINT DD SYSOUT=A
//*
//* STEP 6: SYSPUNCH STATEMENT
//*
//SYSPUNCH DD DSN=&&SYSCIN,;
// DISP=(,PASS),UNIT=SYSDA,
// DCB=BLKSIZE=400,
// SPACE=(400,(400,100))
//*
//* STEP 7: COB STATEMENT; STEP 8: EXEC PGM STATEMENT
//* STEP 9: PARM STATEMENT; STEP 10: COND STATEMENT
//*
//COB EXEC PGM=IKFCBL00,REGION=2048K,COND=(5,GE),
// PARM='NOTRUNC,NODYNAM,LIB,SIZE=256K,BUF=32K,APOST,DMAP,XREF'
//*
//* STEP 11: STEPLIB STATEMENT
//*
//STEPLIB DD DSN=IKF.V1R2M4.VSCOLIB,DISP=SHR
//*

Figure 39. JCL: Invoke COBOL Preprocessor and Compiler (Part 1 of 2)

Chapter 4. Language Definition Considerations 119

//* STEP 12: SYSLIB STATEMENT; STEP 13: DD STATEMENT
//*
//SYSLIB DD DSN=CICS.V3R2M1.SDFHCOB,DISP=SHR
// DD DSN=CICS.V3R2M1.SDFHMAC,DISP=SHR
//*
//* STEP 14: SYSPRINT STATEMENT
//*
//SYSPRINT DD SYSOUT=O
//*
//* STEP 15: SYSIN STATEMENT
//*
//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//*
//* STEP 16: SYSLIN STATEMENT
//*
//SYSLIN DD DSN=USERID.DEVLEV.OBJ(PROGNAME),DISP=SHR
//*
//* STEP 17: SYSUT1 STATEMENT
//*
//SYSUT1 DD UNIT=SYSDA,SPACE=(460,(350,100))
//*
//* STEP 18: SYSUT2 STATEMENT
//*
//SYSUT2 DD UNIT=SYSDA,SPACE=(460,(350,100))
//*
//* STEP 19: SYSUT3 STATEMENT
//*
//SYSUT3 DD UNIT=SYSDA,SPACE=(460,(350,100))
//*
//* STEP 20: SYSUT4 STATEMENT
//*
//SYSUT4 DD UNIT=SYSDA,SPACE=(460,(350,100))
//*
//* STEP 21: SYSUT5 STATEMENT
//*
//SYSUT5 DD UNIT=SYSDA,SPACE=(460,(350,100))

Figure 39. JCL: Invoke COBOL Preprocessor and Compiler (Part 2 of 2)

120 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

* SCLM LANGUAGE DEFINITION FOR
* OS COBOL WITH CICS PREPROCESSOR 3.2.1
*
* CICS OUTPUT IS PASSED VIA THE CICSTRAN DD ALLOCATION TO OS COBOL.
*
* POINT THE FLMSYSLB MACRO(S) AT ALL 'STATIC' COPY DATASETS.
* CUSTOMIZE THE 'OPTIONS' AND 'GOODRC' FIELDS TO YOUR STANDARDS.
* ADD THE 'DSNAME' FIELD IF THE TRANSLATOR IS IN A PRIVATE LIBRARY.
* WHEN A NEW TRANSLATOR VERSION REQUIRES TOTAL RECOMPILATION FOR THIS
* LANGUAGE, THE 'VERSION' FIELD ON FLMLANGL SHOULD BE CHANGED.

*
COBCICS FLMSYSLB CICS.V3R2M1.SDFHCOB
*

FLMSYSLB LANG=COBCICS,VERSION=CICS321,ALCSYSLB=Y
*
* PARSER TRANSLATOR
*

FLMTRNSL CALLNAM='SCLM COBOL PARSE', C
FUNCTN=PARSE, C
COMPILE=FLMLPCBL, C
PORDER=1, C
OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

*
* BUILD TRANSLATORS
* - CICS PRECOMPILE - STEP NAME TRN
*
* STEP 1

FLMTRNSL CALLNAM='CICS PRE-COMPILE', C
FUNCTN=BUILD, C

* STEP 2
COMPILE=DFHECP1$, C

* STEP 3 (* STEPLIB *)
DSNAME=CICS.V3R2M1.SDFHLOAD, C
VERSION=2.1, C

* STEP 10 (* COND *)
GOODRC=4, C
PORDER=1

* STEP 4 (* SYSIN *)
FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C

DDNAME=SYSIN
* STEP 5 (* SYSPRINT *)

FLMALLOC IOTYPE=O,RECFM=FBA,LRECL=121, C
RECNUM=35000,PRINT=Y,DDNAME=SYSPRINT

*
* STEP 6 (* SYSPUNCH *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C
RECNUM=5000,DDNAME=SYSPUNCH

*
* STEP 7 (*COBOL INTERFACE - STEP NAME COB *)
* STEP 8

FLMTRNSL CALLNAM='COBOL COMPILE', C
FUNCTN=BUILD, C
COMPILE=IKFCBL00, C

* STEP 11 (* STEPLIB *)
DSNAME=IKF.V1R2M4.VSCOLIB, C
VERSION=1.0, C
GOODRC=4, C

* STEP 22
PORDER=3, C

Figure 40. SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 1 of
2)

Chapter 4. Language Definition Considerations 121

Note: For reference purposes, the language definition shown in Figure 40 contains
comments with step numbers placed in the middle of commands; for this
language definition to run, these comments must be removed.

* STEP 9 (* PARMS *)
OPTIONS=(NOTRUNC,NODYNAM,LIB,SIZE=256K,BUF=32K,APOST, C
DMAP,XREF)* DDNAME ALLOCATIONS

* STEP 16
* 1 (* SYSLIN *)

FLMALLOC IOTYPE=O,KEYREF=OBJ,RECFM=FB,LRECL=80, C
RECNUM=5000,DFLTTYP=OBJ

* STEP 22
* 2 (* N/A *)

FLMALLOC IOTYPE=N
* STEP 22
* 3 (* N/A *)

FLMALLOC IOTYPE=N
* STEP 12; STEP 13
* 4 (* SYSLIB *)

FLMALLOC IOTYPE=I,KEYREF=SINC
* STEP 15
* 5 (* SYSIN *)

FLMALLOC IOTYPE=U,KEYREF=SINC,DDNAME=SYSPUNCH
* STEP 14
* 6 (* SYSPRINT *)

FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=FBA,LRECL=133, C
RECNUM=25000,PRINT=Y,DFLTTYP=LIST

* STEP 22
* 7 (* SYSPUNCH *)

FLMALLOC IOTYPE=N
* STEP 17
* 8 (* SYSUT1 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 18
* 9 (* SYSUT2 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 19
* 10 (* SYSUT3 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 20
* 11 (* SYSUT4 *)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 22
* 12 (* SYSTERM *)

FLMALLOC IOTYPE=N
* STEP 21
* 13 (* SYSUT5 *)

FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

* STEP 22
* 14 (* SYSUT6 *)

FLMALLOC IOTYPE=N

* 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 40. SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 2 of
2)

122 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 5. Using SCLM and Information Manager

The INFO SAMPLIB code provides a sample interface between SCLM and IBM’s
Information/Management API in the Pascal programming language. This code
demonstrates how INFO and SCLM can be used together using the INFO API. A
simple change code verification user exit scenario is implemented as a working
example program (FLM00CCV).

The FLM00CCV program retrieves an INFO problem record and verifies:
1. The record exists.
2. The Problem Status field is set to OPEN.
3. The Assignee Name field is the same as the userid parameter passed by SCLM.

If any of these conditions fail, FLM00CCV sends a return code of 8 to SCLM. This
example program is for demonstration purposes; however, it can be adapted to
interface with SCLM Build and Promote through user exits.

Required Environment
v Information/Management software Version 4.2 or above must be installed on the

target MVS system.
v The INFO API (BLGYSRVR) must be installed on the system.
v A valid INFO session name, class name, and table name must exist.
v For software verification purposes, at least one problem record should exist in

the INFO database.
v A Pascal compiler should be available to compile the source into an executable

module.

Description of User Program Interaction

The FLM00CCV program can be invoked as a regular MVS program; however, it is
designed to be invoked as an SCLM change code verification user exit. If invoked
as a user exit, the INFO specific arguments are passed by the SCLM option list
defined in the FLMCNTRL macro (VERCCOP) and the SCLM-specific arguments
are appended to the VERCCOP string.

If errors are encountered, messages are written to the screen indicating the nature
of the error. These messages are for informational use only. No error recovery is
supported.

Input Parameters

The following section discusses the input parameters for the sample program.

Option List Format

The option list format is as follows:
group,
type,
member,

© Copyright IBM Corp. 1990, 1999 123

language,
userid,
auth code,
change code

Operands

The following option list shows the various type operands for the sample program.

Option List

An option list contains INFO specific arguments. Each one is contained in single
quotes. Empty or blank place holder arguments are expected for unused arguments
occurring before an argument is to be used.

The required option list arguments are as follows:

pica_tabn
The name of the program interface data table (PIDT) to be used for record
retrieval. The maximum length is 8 characters.

pica_clsn
The privilege class name to be used when executing an INFO API transaction.
The maximum length is 8 characters.

pica_sess
The session member name used by the INFO initialization transaction. The
maximum length is 8 characters.

The optional option list arguments are as follows:

pica_clsc
The maximum number of privilege class records that can be held in storage in
the current session. DEFAULT = 1.

pica_dbid
The dbase ID used to look for records. DEFAULT = 5, the
information/management database. The maximum length is 1 character.

pica_msgd
The indicator used to tell the interface where to send messages produced by
the API. DEFAULT = C, return msgs in the message chain. The maximum
length is 1 character.

pica_spli
The time interval in minutes that the activity log is spooled and reallocated if
the messages are being printed. DEFAULT = 0.

pica_stxt
The text suppression indicator, when not ‘Y’ then text fields are retrieved also.
DEFAULT = Y. The maximum length is 1.

pica_tint
The amount of time in seconds to wait for a transaction to complete after a
‘sync and wait’ before notification of a timeout. DEFAULT = 300.

pica_usrn
The name by which INFO recognizes the application. The maximum length is
8 characters. DEFAULT = USERID passed by SCLM upon invocation.

124 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

SCLM List

An SCLM list contains SCLM specific arguments. Each one is separated by a
comma. These arguments represent the current member being manipulated by
SCLM.

GROUP
Group where the change is being made but not used.

TYPE
Type containing the member being changed but not used.

MEMBER
Member being changed but not used.

LANGUAGE
Language of the member being changed but not used.

USERID
User ID performing the change. This is used to validate the assignee name in
the retrieved problem record.

AUTHCODE
Authorization code of the member being changed but not used.

CHANGE CODE
Change code being used for the change. This is the problem record ID used for
the actual record retrieval.

Program Flow

When the FLM00CCV program is invoked, the program flow is as follows:
1. Obtain the string containing the input arguments by the Pascal parms

function.
2. Allocate memory for the INFO API control block (PICA).
3. Parse the argument string to extract the INFO specific arguments and set

appropriate fields in the PICA.
4. Parse the remaining argument string to extract the userid and change code

from the SCLM specific arguments.
5. Call the INFO API requesting INFO system initialization.
6. Call the INFO API requesting record retrieval of the problem record known to

INFO by the change code.
7. Verify that the user requesting to change the member has authority to do so

based on information contained in the problem record.
8. Call the INFO API to free the storage associated with the PIDT obtained by

the record retrieval.
9. Call the INFO API requesting INFO system termination.

10. Output error messages if applicable.
11. Return to caller with completion code in register 15.

Chapter 5. Using SCLM and Information Manager 125

Program Response to Errors

When an error condition is encountered, the program issues an error message, if
possible, and terminates processing with the appropriate return code. When a
warning condition is encountered, the program issues a warning message and
continues processing. When a warning or error is the result of an INFO API call, a
message appropriate to the reason code is printed. If an INFO message chain is
available, the associated messages are also printed.

The following is a list of the types of errors that can occur when using the
program. Warnings generated by INFO are represented by a return code of zero
because SCLM considers any non-zero return code from a change code verification
routine as an indication of failure.
v Warnings (return code 0) that can occur:

– Any INFO API call that completes with a return code of 4.
v Errors (return code 8) that can occur and halt execution. The following are input

parameter errors:
– No input parameters
– No quoted parameters found
– Invalid or missing table name
– Invalid or missing class name
– Invalid or missing session name
– Invalid maximum privilege class number
– Invalid database ID
– Invalid message destination indicator
– Invalid spool interval
– Invalid text suppression indicator
– Invalid transaction interval
– Invalid application ID
– Missing userid
– Missing change code

v Length of a PIDT response buffer is greater than PIDTBUFLENMAX, which is
defined in FLM00COM

v Number of rows associated with a PIDT is greater than PIDTROWMAX, which
is defined in FLM00IDT

v Problem Status or Assignee Name fields not found in PIDT
v Problem Status or Assignee Name fields do not contain data
v Problem status is not OPEN
v Assignee name does not match the user ID
v Any INFO API call that completes with a return code greater than 4.

Return Codes
0 Successful completion. Warning conditions may have occurred and

messages may have been written.

8 An error condition arose and messages were written.

Example

This example calls the FLM00CCV program through the SCLM change code
verification user exit.

126 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

IN FLMCNTRL MACRO:
VERCC=FLM00CCV
VERCCDS=PROJ1.SAMPLIB.LOAD
VERCCOP=' 'TS0032R'' ''MASTER'' ''BLGSESV4'' '

This invocation uses the INFO table name TS0032R for record retrieval, the
MASTER privilege class and the BLGSESV4 INFO session load module for the
INFO initialization request. All other INFO parameters use the default values.
SCLM appends the group, type, member, language, userid, auth code, and change
code, each separated by commas, to the VERCCOP string prior to invocation.

Pascal Source Data Sets

The INFO API Pascal source record definitions are as follows:

FLM00COM
Defines a relatively generic character array and a pointer to it.

FLM00IPT
Defines the INFO API program interface pattern table (PIPT) record.

FLM00IAT
Defines the INFO API program interface argument table (PIAT) record.

FLM00IDT
Defines the INFO API program interface data table (PIDT) record.

FLM00IRT
Defines the INFO API program interface results table (PIRT) record.

FLM00IMB
Defines the INFO API program interface message block (PIMB) record.

FLM00ICA
Defines the INFO API program interface communications area (PICA) record.

FLM00CCV Pascal Source Files

The FLM00CCV Pascal source files are as follows:

FLM00INH
The HELP file that includes all of the Pascal INFO API record definitions

FLM00HLP
The HELP file that defines constants and types used by the FLM00CCV
program and contains function and procedure definitions used in the program.

FLM00FNS
A Pascal segment containing functions and procedures used by the main
program.

FLM00CCV
The main program module.

Compilation Instructions for the Sample Program

The compilation instructions for the sample program using architecture definitions
are as follows:

Chapter 5. Using SCLM and Information Manager 127

1. Modify the following architecture definitions to reflect the local SCLM
environment. Copy these architecture definitions to the proper type and copy
the source members previously indicated to their proper types.

2. Use SCLM build to compile the modules.

**
* FLM00SMP architecture definition
* A sample archdef used to include the FLM00FNA and
* FLM00CCA archdefs that compile the info sample change code
* verification routine.
*
INCL FLM00FNA ARCHDEF
INCL FLM00CCA ARCHDEF
* END OF FLM00SMP architecture definition
**

**
* FLM00CCA architecture definition
* This is a sample archdef used to compile FLM00CCV, the module
* containing the main routine for the info sample change code
* verification program.
*
LOAD FLM00CCV LOAD
LMAP FLM00CCV LMAP
*
* the FLM00CCV main program
INCLD FLM00CCV SOURCE
*
* segment containing source code for assorted support functions
INCLD FLM00FNS SOURCE
*
* 'SYSLIB' contains the Pascal link libraries (site dependent)
CMD INCLUDE SYSLIB(AMPZMVSB)
*
* 'ISPLLIB' contains the info API SERVER libraries (site dependent)
CMD INCLUDE ISPLLIB(BLGYSRVR)
*
PARM AMODE(31), RMODE(ANY)
*
* END OF FLM00CCA architecture definition
**

Figure 41. Sample Architecture Definitions (Part 1 of 2)

128 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

**
* FLM00FNA architecture definition
* This is a sample archdef used to compile FLM00FNA; the segment
* containing support functions for the info sample change code
* verification routine.
*
LOAD FLM00FNS LOAD
LMAP FLM00FNS LMAP
*
* segment containing source code for assorted support functions
INCLD FLM00FNS SOURCE
*
* 'SYSLIB' contains the Pascal link libraries (site dependent)
CMD INCLUDE SYSLIB(AMPZMVSB)
*
* 'ISPLLIB' contains the info API SERVER libraries (site dependent)
CMD INCLUDE ISPLLIB(BLGYSRVR)
*
PARM AMODE(31),RMODE(ANY)
*
* END OF FLM00FNA architecture definition
**

Figure 41. Sample Architecture Definitions (Part 2 of 2)

Chapter 5. Using SCLM and Information Manager 129

130 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 6. Understanding and Using the Customizable
Parsers

Parsers are provided as source code (in REXX) for those customers who need to
extend or modify the behavior of the parsers supplied by IBM. This section
explains the logic of the parsers as shipped and provides examples of how to
modify the parsers to suit your own needs and standards.

The customizable parsers supplied by IBM are:

FLMLRASM Assembler H parser

FLMLRCBL COBOL II parser

FLMLRCIS C/C++ for MVS parser

FLMLRC2 C++ for Windows parser

FLMLRC37 C/370 parser

FLMLRDTL DTL parser

FLMLRIPF OS/2 IPF parser

These parsers can be found in the ISPF sample library, ISP.SISPSAMP.

The Parsers as Shipped

The IBM-supplied parsers are delivered as REXX source. If you do not require any
changes to the functions provided, the source modules can be used. The parsers
may also be compiled, pre-linked, and link edited (using the IBM Compiler and
Library for REXX/370 and the Linkage Editor) for optimum performance.

Use the CALLMETH=TSOLNK parameter on the FLMTRNSL macro to directly invoke
SCLM translators written in REXX.

Sample Language Definitions

The sample language definitions are provided to demonstrate how to invoke the
customizable parsers:

FLM@RASM Assembler H sample language definition

FLM@RCBL COBOL II sample language definition

FLM@RCIS C/370 sample language definition

FLM@RC37 C/370 sample language definition

FLM@DTLC DTL sample language definition

FLM@WBCC C++ for Windows sample language definition

FLM@WIPF OS/2 Help sample language definition

In addition, a sample REXX language definition, FLM@REXC, is provided to
compile, pre-link, and link edit REXX source code.

© Copyright IBM Corp. 1990, 1999 131

|

||

||

||

||

||

||

||

|

||

||

||

||

||

||

||

Parser Error Listings

For parsing errors with return codes of 4, 8, or 10, the parsers write error messages
to a data set called userid.SCLMERR.LISTING. An error message consists of two or
three lines. The first line is the error code: 4, 8, or 10. The second line and the third
line (if it exists) contain one of the following:
v One or more non-valid input parameters
v A dependency name that is greater than 8 characters in length
v A dependency name that cannot be stored in the dependency buffer because it is

full
v A line of source containing an error
v A single quote or double quote that is mismatched and its line number

For additional information, refer to ISPF Software Configuration and Library Manager
(SCLM) Reference

Modifying the Parsers

This section describes the general design of the customizable parsers and provides
several examples of updating the parsers.

The parsers read each line of the source code and process tokens on each line.
Tokens are discrete elements on a line of source code; they are
language-dependent. For example, consider the following COBOL statement:

MOVE 'SMITH' TO NAME.

Seven tokens appear in this example: MOVE, the two single quotation marks, SMITH,
TO, NAME, and the period.

State variables are used to hold the current conditions and expectations created by
the processing of prior tokens in order to process the current token. For example, if
a single quote is found, the single quote state variable (state.single) is turned on.
All tokens, regardless of multiple lines, are ignored until the matching single quote
is found, or until the end of file is reached. In the COBOL and Assembler parsers,
dependency names may be enclosed in quotes; all data after the dependency name
is ignored until the matching quote is found. Dependency keywords (COPY or EXEC
SQL INCLUDE) inside quotes are ignored. For example, consider the following
COBOL statement:

MOVE 'COPY B' TO ACTION.

B will not be placed into the dependency buffer because COPY will not be processed
as a dependency keyword.

Because of these state variables, dependencies, comments (in C/370), quotes, and
so on can span lines. Concatenation of keywords and dependency names
(particularly in COBOL) is not supported by the parsers. If dependency names are
split between lines, the partial dependency name will not be added by the REXX
parser.

132 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Adding More Elaborate Parsing Error Messages

This section provides an example of modifying a customizable parser to add more
complete error messages to the userid.SCLMERR.LISTING data set. This support
can be added to all three of the REXX parsers. The COBOL parser, FLMLRCBL,
will be used in this example.

The error_listing routine is used to place the error_string1 and error_string2
strings into the error messages data set. error_string1 and error_string2 are set
before invoking error_listing. The following list identifies, in order, the routine, the
expanded English error message, and the error string to be changed in
FLMLRCBL.

Routine Change Required

initialization Change:
error_string1 = miss_parm1 ' ' ||,

miss_parm2 ' ' ||,
miss_parm3

to
error_string1 = 'MISSING PARAMETER(S): ' ||,

miss_parm1 ' ' ||,
miss_parm2 ' ' ||,
miss_parm3

initialization Change:
error_string1 = 'LISTSIZE=',

||sclm_dep_array_size
error_string2 = ' LISTSIZE < ',

DEP_ELEM_SIZE

to
error_string1 = 'LISTSIZE PARAMETER MUST BE AT LEAST',

DEP_ELEM_SIZE
error_string2 = '

initialization Change:
error_string1 = 'LISTSIZE=',

||sclm_dep_array_size

to
error_string1 = 'LISTSIZE PARAMETER MUST BE A '||,

'POSITIVE WHOLE NUMBER'

initialization Change:
error_string1 = 'LISTINFO=',

||sclm_dep_addr

to
error_string1 = 'LISTINFO PARAMETER MUST BE A '||,

'POSITIVE WHOLE NUMBER'

initialization Change:
error_string1 = 'STATINFO=',

||sclm_stats_addr

to
error_string1 = 'STATINFO PARAMETER MUST BE A '||,

'POSITIVE WHOLE NUMBER'

Chapter 6. Understanding and Using the Customizable Parsers 133

process_line Change:
error_string1 = token

to
error_string1 = 'DEPENDENCY 'token' EXCEEDS 8 '||,

'CHARACTERS ON LINE '||,
stats.total_lines

add_dep Change:
error_string1 = name

to
error_string1 = 'DEPENDENCY ARRAY CAPACITY EXCEEDED '||,

'WITH DEPENDENCY 'name

termination Change:
error_string1 = SINGLE_QUOTE state.single_line

to
error_string1 = 'MISMATCHED SINGLE QUOTE ON ' state.single_line

termination Change:
error_string1 = DOUBLE_QUOTE state.double_line

to
error_string1 = 'MISMATCHED DOUBLE QUOTE ON ' state.double_line

termination Change:
error_string1 = END_KEYWORD

to
error_string1 = 'DEPENDENCY ARRAY CAPACITY EXCEEDED,'
error_string2 = 'NOT ENOUGH SPACE TO WRITE END-OF-LIST KEYWORD'

Appending to the Error Listing File

If parser errors are found, error messages are written to the
userid.SCLMERR.LISTING data set. This data set is created (re-written) each time
an error is found, each time one of the REXX parsers is invoked. The
allocate_error_listing routine is used to allocate this data set. The overwriting of
this data set is suitable for creating or modifying members with Edit. However,
during multiple migrations of members, this data set will be overwritten each time
a parser error occurs per parser invocation.

In order to keep all parser errors for all members, modify the allocate_error_listing
routine to append to the userid.SCLMERR.LISTING data set, instead of
overwriting it. Change
IF SYSDSN(ERRFILE) = 'OK' THEN

disp = 'OLD'
ELSE

to
IF SYSDSN(ERRFILE) = 'OK' THEN

disp = 'MOD'
ELSE

134 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

With this change, all invocations of the parser will append any error messages to
the error file without overwriting the previous contents.

Compiling the Parsers

To increase parser performance, the REXX parsers can be compiled and pre-linked
using the IBM Compiler and Library for REXX/370. Using the FLM@REXC
language definition, SCLM can be used to compile, pre-link, and link edit the
parsers. To compile a parser using FLM@REXC:
1. Add FLM@REXC to your SCLM project definition.
2. Make any required changes to FLM@REXC, such as changing specified data set

names.
3. Re-assemble and re-link the project definition.
4. Migrate the parsers into SCLM using the REXXCOM language.
5. Build each of the parsers.
6. If necessary, copy the load modules (FLMLRASM, FLMLRCBL, FLMLRC37,

FLMLRCIS, FLMLRC2, FLMLRDTL, and/or FLMLRIPF) to common data sets.
7. Change the language definitions to use the load modules instead of the

interpreted versions.
Remember to change the CALLMETH parameter on the FLMTRNSL macro.

8. Re-assemble and re-link the project definition.

Chapter 6. Understanding and Using the Customizable Parsers 135

136 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Part 2. Developer’s Guide

Chapter 7. The Software Configuration and
Library Manager —SCLM 139
SCLM Project Environment 139

User Application Data 139
SCLM Hierarchies 140
Key/Non-Key Groups 141
Moving Data through the Hierarchy . . . 142

Chapter 8. Using SCLM Functions 143
SCLM Main Menu 143
SCLM Main Menu Options 144

SCLM Main Menu Action Bar Choices: . . . 144
SCLM Main Menu Panel Fields: 144

View (Option 1) 145
SCLM View - Entry Panel Action Bar Choices 145

Reflist 146
Refmode. 146
SCLM 146
SCLM View - Entry Panel Fields 147

Edit (Option 2) 148
SCLM Edit - Entry Panel Fields 149
Comparison of SCLM and ISPF Editors . . . 150
SCLM Command Macros 151

EDIT Command 151
Save Command 151
SCREATE Command 152
SMOVE Command 153
SPROF Command 153
SCLM Edit Profile Panel Fields 154
SREPLACE Command 154
Overriding SCLM Command Macros . . . 155

Utilities (Option 3) 155
Library Utility 156

Library Utility Commands 158
Member Selection List 159
Accounting Record 161
Statistics 164
Build Map Record 171
Build Map Contents 172
Authorization Code Update 173

Ada Sublibrary Management Utility 174
Member Selection List 175
Intermediate Record 177

Migration Utility 178
Database Contents Utility 180

Specifying Selection Criteria 182
Accounting Information Fields 183
Hierarchy search information 184
Tailored Output 186
Tailored Output Examples 188

Architecture Report Utility. 191
Architecture Report Example 193

Export Utility 198
Export Report Example 200

Import Utility 202
Import Report Example. 204

Audit and Version Utility 207
SCLM Version Selection. 209
SCLM Audit and Version Record 212

Delete Group Utility 213
Delete Group Report Example 215

Build (Option 4) 217
Build Report Example 221

Promote (Option 5) 224
Promote Report 227
Processing Errors 230

Data Set Overflow 231
Data Contention 231

Command (Option 6) 231
Batch Processing 232
Output Disposition 232
Sample Project Utility (Option 7) 233

Chapter 9. Development Scenario 235
Understanding the Hierarchy and the SCLM Main
Menu 235
Understanding the Architecture Definition . . . 236
Sample SCLM Development Cycle 238
Using the SCLM Editor 240
Understanding the Library Utility 241
Using Build. 242
Editing the Member to Correct Errors 243
Attempting to Promote a Member before
Performing a Build 243
Rebuilding the Changed Member 244
Using the Database Contents Utility 244
Promoting a Member Successfully 245
Drawing Down a Promoted Member 246
Performing Project Housekeeping Activities . . . 247

Chapter 10. Architecture Definition 249
Architecture Members 249

Kinds of Architecture Members 249
Defining Compiler Processed Components . . . 250

Compilation Control Architecture Members 250
Specifying Source Members 251

Defining Link Edit Processed Components . . . 251
SCLM Build and Control Timestamps 252

Defining Application and Subapplication
Components 253
Generic Architecture Members 254
Build and Promote by Change Code 254
Architecture Statements. 256

Statement Format 256
Statement Uses 257

Sample Application Using Architecture Definitions 264
Ensuring Synchronization with Architecture
Definitions 266
Build Outputs 268

Multiple Build Outputs 268
Sequential Build Outputs 268
Default Output Member Names 269

© Copyright IBM Corp. 1990, 1999 137

Languages of Output Members 269

Chapter 11. Managing Complex Projects . . . 271
Impact Assessment Techniques 271
Dependency Processing. 271
Propagating Applications to Other Databases . . 272

138 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 7. The Software Configuration and Library Manager
—SCLM

The Software Configuration and Library Manager (SCLM) component of ISPF
contains the capabilities of both a Library Manager and a Configuration Manager
program.

Library Manager programs control source code, keeping developers from
accidentally overwriting each other’s code changes and providing a mechanism for
moving the source code from one set of development libraries to the next. Also,
SCLM can keep back-level versions of source files, with an audit trail of changes
and other basic library management functions that you can use in your code
development and maintenance processes.

Configuration Manager programs track how all the pieces of an application fit
together. Not just the source code, but the object and load modules as well. SCLM
adds additional capabilities, such as how test cases and documentation are
associated with a source code module. SCLM uses this information to control
compiling, linking, and promoting an application. SCLM ″builds″ are optimized
such that only pieces that need to be regenerated when a change is made are built.

SCLM Project Environment

The SCLM project environment is made up of data sets used by SCLM to store and
control the user application software for an individual project. The project
environment contains three types of data associated with an individual project:
v User Application Data
v SCLM Control Data (see “Step 6: Allocate and Create the Control Data Sets” on

page 19)
v Project Definition Data (see “Chapter 1. Defining the Project Environment” on

page 3)

User Application Data

User application data consists of the application data (programs) being developed
for a single project. SCLM stores all user data associated with a single project as
members within a hierarchical set of MVS partitioned data sets (ISPF libraries).
These data sets are called the project partitioned data sets. Users refer to
SCLM-controlled ISPF libraries with an SCLM naming convention containing three
levels of qualification, specifically:
project_name.group_name.type_name

The first qualifier, project_name, is the unique project identifier associated with the
hierarchy.

SCLM organizes project data sets into groups, the second identifier within the
naming convention. Each group represents a different stage or state of the user
data within the life cycle of a project. For example, assume a project has three
groups named DEV1, TEST, and RELEASE. The DEV1 group represents data being
modified. The TEST group represents data being tested. The RELEASE group

© Copyright IBM Corp. 1990, 1999 139

represents data released for customer use. The groups of a project are organized
into hierarchical order to form a tree-like hierarchy.

A group is made up of several data sets that can contain different types of data.
Types, the third qualifier of the naming convention, are used to differentiate the
kinds of data maintained in the groups of a project. For example, source code
would be stored in one type and listings in another type. It is better not to mix
different data types in SCLM. (Although SCLM allows you to do this, it is not
recommended; data with different formats should be stored in different types.)

Thus a user working on an application for project PROJ1 might be assigned to the
DEV1 group. The project can be using four different types of data. Therefore the
user might have the following project partitioned data sets to work in:
PROJ1.DEV1.SOURCE - all source modules
PROJ1.DEV1.OBJECT - all compiler object files
PROJ1.DEV1.LISTING - all compiler listings
PROJ1.DEV1.LOAD - all executables (link edit output)

Note: SCLM can use data sets with names consisting of three levels of
qualification as is the practice in many ISPF environments. It can also use
data sets with two or more levels of qualification. This is an option that the
project manager must enable for a project to use. If this option is used,
SCLM developers would still use the project_name.group_name.type_name
naming convention when performing SCLM functions. See Part Two of this
book for more information on this option.

SCLM Hierarchies

The groups within a project are organized in a hierarchical order with each group
being subordinate to the group above it. A sample hierarchy is shown in Figure 42.

The topmost group is not subordinate to any group and is known as the top
group, root group, or the root of the hierarchy. There is only one top group in each
hierarchy. The bottom groups in a hierarchy are called development groups. The
names for the development groups in Figure 42 are DEV1 and DEV2. All
modifications and additions to user-created data must occur in the development
groups of the hierarchy. Groups of equivalent rank within the hierarchy are
considered to be within the same layer of the hierarchy. Most hierarchies have
multiple layers.

Changes can be promoted to the next group, TEST, in the example hierarchy.
Promote means to copy or move a member or a set of members from one group to
the next group in the hierarchy. Each group can only promote members to the
group to which it is subordinate. This link between groups is known as the promote

Figure 42. Sample Project Hierarchy

140 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

path. For example in Figure 42 on page 140 the three promote paths are DEV1 to
TEST, DEV2 to TEST, and TEST to RELEASE. Any number of groups can promote
into the same group.

Hierarchies are always searched from bottom to top along a path called the
hierarchical view. The hierarchical view can begin at any group in the hierarchy and
follows the promote paths to the topmost group in the hierarchy. Therefore in
Figure 42 on page 140, two examples of hierarchical views are DEV1 to TEST to
RELEASE and TEST to RELEASE. Thus, when referencing data in the hierarchy,
members at lower groups take precedence over members at higher groups. All
data existing in groups TEST and RELEASE is accessible from development
libraries in groups DEV1 or DEV2. When a change is made to a member in the
DEV1 group, this change is not available to the DEV2 group until the changed
member has been promoted to the TEST group.

Therefore, within a hierarchy, the user data located at the lower layers of the
hierarchy is in a more volatile state than the data at the upper layers. The upper
layers of the hierarchy usually contain versions of products ready or nearly ready
for release to customers, while the lower layers contain versions of products
currently under development.

Key/Non-Key Groups

You can further identify groups in the project hierarchy as key groups and non-key
groups. Key groups are defined as the groups within a hierarchy that contain all
the software components of the application under development. A key group is a
group into which you move data during a promotion. A project can have as many
key groups as you want as long as any hierarchical view has no more than 123
groups. The actual limiting factor is the MVS limit of 123 extents for a
concatenated partitioned data set.

SCLM allows a project to specify transition groups between key groups. These
groups are known as non-key groups. A non-key group is a group into which you
copy (rather than move) data during a promotion. When you promote data in a
hierarchy, SCLM does not purge data from a key group until it reaches the next
key group. Therefore, in a project with non-key groups, SCLM temporarily
duplicates data in the non-key groups and the next lower key group. Figure 43
illustrates the relationship between a key and a non-key group within a project
hierarchy.

Figure 43. Key and Non-Key Groups Within the Project Hierarchy

Chapter 7. The Software Configuration and Library Manager —SCLM 141

As the figure shows, two non-key groups (the STAGE layer) appear between the
development groups (the DEV layer) and the test and integration group (the TEST
layer.) Developers use the STAGE groups as an interim place into which they
promote their work before it moves to the next layer.

Using non-key groups enables you to display the critical elements of the
hierarchical structure on ISPF panels. Because ISPF panels allow you to display
only four key groups at one time, it is difficult to display the highest group in the
hierarchy when you have a complex project that contains many layers.

Select key groups and non-key groups with the following set of guidelines:
v The lowest (development) groups must be key.
v Any group with more than one lower group promoting into it should be key.

Moving Data through the Hierarchy

Data moves within an SCLM hierarchy in two directions, up or down. When
SCLM promotes members up the hierarchy from one group to the next group, the
following rules apply:
v Copy members from key groups to non-key groups
v Move members from non-key groups to non-key groups
v Move members from key groups to key groups
v Move members from non-key groups to key groups and purge from the

previous key group.
v Do not promote data from a primary non-key group.

In general, when SCLM accesses a hierarchy from a particular group, it
concatenates only the necessary groups. If the lowest group in the hierarchy to be
accessed is non-key, SCLM concatenates it with all the non-key groups above it, up
to the next key group. From there, SCLM concatenates only the key groups. If the
starting group in the hierarchy to be accessed is key, SCLM concatenates only it
and the key groups above it.

The one exception to this concatenation involves non-key groups that have more
than one group promoting into them. Non-key groups of this kind are as
significant as key groups, and SCLM must also concatenate them in a hierarchy.
Groups that must be concatenated when a hierarchy is to be accessed are known as
primary groups. Thus, all key groups and all non-key groups with more than one
group promoting into them are primary groups.

After members are promoted from the development groups to the higher groups in
the hierarchy, users can bring members back to the development groups by
performing a draw down. A draw down copies the member at the higher group to
the specified development group. For a member to be drawn down it must be
within the hierarchical view of the development group. Members can only be drawn
down to development groups. SCLM performs an automatic draw down when the
member is edited.

142 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 8. Using SCLM Functions

With SCLM functions, you can view, create, update, delete, compile, link, promote,
and report on data stored in the database of a project. In addition, you can
generate reports with the build, promote, and utilities functions.

You can call SCLM functions in a variety of environments. In addition to the
SCLM dialog interface, you can call a subset of SCLM functions independently
with a command line processor or a program service interface. Refer to ISPF
Software Configuration and Library Manager (SCLM) Reference for more information.

This chapter describes the panels you use to access the SCLM functions and the
various options you can select from each panel. It also describes the panels that
allow you to generate reports and provides several examples of the reports.

This chapter also compares SCLM to ISPF and notes the differences in the EDIT
commands and the similarities of the utilities.

You can access all interactive SCLM functions through a set of panels under ISPF
dialog management by selecting the SCLM option from the ISPF Primary Option
Menu.

If SCLM does not appear on any of your menu panels or on your Menu pull-down,
you can still access it by typing TSO SCLM on any ISPF command line, then
pressing Enter. If SCLM is available to your terminal session, the SCLM Main
Menu is displayed. If SCLM has not been installed on your system, or if it has
been installed but is not available to your terminal session, a panel (ISRNOSLM) is
displayed to inform you that SCLM is not available to your terminal session.

Notes:

1. A virtual region size of 4096K is recommended when you use the SCLM dialog.
Increase the virtual region size if you encounter abends related to insufficient
memory.

2. SCLM maintains allocations of data sets in the hierarchy between uses of SCLM
functions. This enhances the performance of SCLM; however, if data sets in the
hierarchy are created, deleted, cataloged or uncataloged while SCLM is active,
you should exit SCLM and reselect the SCLM Main Menu.

SCLM Main Menu

Figure 44 on page 144 shows the seven SCLM primary functions from the SCLM
Main Menu.

© Copyright IBM Corp. 1990, 1999 143

SCLM Main Menu Options

When you select one of these options and press Enter, another panel appears that
is determined by the option you selected.

View See “View (Option 1)” on page 145.

Edit See “Edit (Option 2)” on page 148.

Utilities See “Utilities (Option 3)” on page 155.

Build See “Build (Option 4)” on page 217.

Promote See “Promote (Option 5)” on page 224.

Command Enter and execute a TSO, CLIST, REXX exec, or SCLM command
from within SCLM.

Sample See “Sample Project Utility (Option 7)” on page 233

Exit Exit from SCLM.

SCLM Main Menu Action Bar Choices:

Menu See “Menu Action Bar Choice” on page xxxi.

Utilities See “Utilities Action Bar Choice” on page xxxii.

Help Help for general and specific topics.

SCLM Main Menu Panel Fields:

Project A project’s unique identifier. This field is required to access any
SCLM function.

Alternate The name of an alternate project definition to use. If this field is left
blank, it defaults to the value specified in the Project field.

Figure 44. SCLM Main Menu Panel (FLMDMN)

SCLM Main Menu

144 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

||

Group This group defines the bottom of the hierarchical view used by the
selected function, and can be any group in the hierarchy. This field
defaults to your TSO PREFIX or to your user ID if no TSO PREFIX
has been created. This field must be a development group if Edit (2)
is chosen.

View (Option 1)

The SCLM View function uses the ISPF View service with an SCLM shell around
it. The View function allows you to display data in a project hierarchy or data that
is not controlled by SCLM. The SCLM View interface analyzes the hierarchy
structure for the project you specify and automatically provides the appropriate
concatenation sequence for the groups. It presents the four lowest key groups
identified in the project definition, starting from the Group specified on the Main
Menu.

SCLM View is functionally equivalent to ISPF View. (Refer to ISPF User’s Guide for
more information.) For example, you can specify a member name unless you want
to see a member selection list. Additionally, you can modify the displayed library
(or “group”) concatenation sequence. You can also view a partitioned data set
(PDS), a partitioned data set extended (PDSE), or a sequential data set. Figure 45
shows the panel SCLM displays when you select option 1, View, from the SCLM
Main Menu.

SCLM View - Entry Panel Action Bar Choices

The action bar displays the same choices as those discussed in “SCLM Main Menu
Action Bar Choices:” on page 144. Additional choices are:

Menu RefList RefMode SCLM Utilities Help
--

SCLM View - Entry Panel

SCLM Library:
Project . . . PROJ1 Alternate - INT
Group USERID . . . ________ . . . ________ . . . ________
Type CLIST
Member . . . ________ (Blank or pattern for member selection list)

Other Partitioned or Sequential Data Set:
Data Set Name . . __
Volume Serial . . ______ (If not cataloged)

Initial Macro ________ Enter "/" to select option
Profile Name ________ _ Browse Mode
Format Name ________ _ Confirm Cancel/Move/Replace

_ Mixed Mode

Data Set Password . . (If password protected)

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 45. SCLM View - Entry Panel (FLMEB#P)

SCLM Main Menu

Chapter 8. Using SCLM Functions 145

Reflist

The Reflist pull-down menu has the following choices:

Reference Data Set
List

Displays a list of up to fifteen data set names that have been
entered in the ″Other″ Data Set Name field and other fields in ISPF
that take a data set name as input.

Reference Library List Displays a list of the last eight ISPF libraries that you have
referenced.

Personal Data Set List Displays a list of up to thirty data set names that you have created
and saved.

Personal Data Set List
Open...

Displays the Open dialog for all Personal Data Set Lists.

Personal Library List Displays a list of up to eight ISPF Library specifications that you
maintain.

Personal Library List
Open...

Displays the Open dialog for all Personal Library Lists.

Refmode

The Refmode pull-down menu has the following choices:

List Retrieve Sets referral lists, personal data set lists, and personal library lists
into a retrieve mode. When you select an entry from the list, the
information is placed into the Dsname Level field, but the Enter
key is not simulated. You can then set other options before pressing
the Enter key. (If this is the current setting, this choice is
unavailable.)

List Execute Sets referral lists, personal data set lists, and personal library lists
into a retrieve mode. When you select an entry from the list, the
information is placed into the Dsname Level field, and the Enter
key is simulated. (If this is the current setting, this choice is
unavailable.)

SCLM

The SCLM pull-down menu has the following choices:

Library Displays the SCLM library utility panel.

Sublib.. Displays the SCLM Sublibrary Management Utility panel.

Migration... Displays the SCLM Sublibrary Management Utility panel.

DB Contents... Displays the SCLM Database Contents panel.

Architecture... Displays the SCLM Architecture Report panel.

Export... Displays the SCLM Export Utility panel.

Import... Displays the SCLM Import Utility panel.

Audit/Version... Displays the SCLM Audit and Version Utility panel.

Delete Group... Displays the SCLM Delete Group Utility panel.

Build... Displays the SCLM Build panel.

Promote... Displays the SCLM Promote panel.

View (Option 1)

146 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

SCLM View - Entry Panel Fields

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition. If you change this field, all groups in the concatenation
sequence are treated as data that SCLM does not control.

Group SCLM uses the group specified in the Group field on the SCLM
Main Menu to determine the four key or primary groups in the
hierarchy that initially appear on the panel. You can enter both
SCLM-controlled groups and non-SCLM-controlled groups in the
concatenation sequence at the same time.

If you specify a group that is defined in the project definition but
not allocated, and you then request a member list, the library (LIB)
members on the member list panel might not be what is expected.
SCLM treats an unallocated group as if the group field were blank
and ignores that group. When this situation exists, SCLM provides a
panel that shows how the LIB numbers correspond to the existing
groups.

Type The identifier for the type of information in the group, such as
SOURCE, ARCHDEF, or PANELS. If you change this field to a
value that is not defined to the project definition, all the groups in
the concatenation sequence are treated as data that SCLM does not
control.

Member The name of an SCLM or non-SCLM-controlled partitioned data set
member. If you leave this field blank or type a pattern, a member
list to appears.

Data Set Name Any fully-qualified data set name, such as ’USERID.SYS1.MACLIB’.
If you include your TSO user prefix (defaults to user ID), you must
enclose the data set name in single quotation marks. If you omit the
TSO user prefix, your TSO user prefix is added to the beginning of
the data set name.

Volume Serial A DASD volume identifier. ISPF does not allow a data set to reside
on more than one volume. SCLM does not use the system catalog
when you specify a volume serial.

Initial Macro An Edit macro to be processed before you begin viewing your
sequential data set or any member of a partitioned data set. This
initial macro allows you to set up a particular environment for the
View session you are beginning. If you leave the Initial Macro field
blank and your Edit profile includes an initial macro specification,
the initial macro from your Edit profile is processed. To suppress
the processing of an initial macro in your Edit profile, enter NONE
in the Initial Macro field.

Profile Name A profile name to override the default Edit profile.

Format Name The name of a format definition or blank if no format is used. A
format definition can include EBCDIC fields, DBCS fields, and a
Mixed field. If the specified format includes a Mixed field definition
and you specify NO in the Mixed Mode field, SCLM ignores the
operation mode.

Confirm
Cancel/Move/Replace

Specifies that you want ISPF to display a confirmation panel
whenever you issue a Cancel, Move, or Replace command.

Mixed Mode You can browse unformatted mixed data that contains both EBCDIC
(1-byte) characters and Double Byte Character Set (DBCS or 2-byte)
characters. To do this, you must select mixed mode by entering a
slash (/) next to the Mixed Mode field. If your terminal does not
support DBCS, SCLM View ignores the Mixed Mode field.

View (Option 1)

Chapter 8. Using SCLM Functions 147

Warn on First Data
Change

Specifies that you want ISPF to warn you that changes cannot be
saved in View. The warning is displayed when the first data change
is attempted.

View on Workstation Select this option to view the host data set member on the
workstation using the workstation tool configured in the ISPF Tool
Configurator. For more information, see the chapter on the ISPF
Workstation Tool Integration Program in the ISPF User’s Guide. Do
not select this option if you want to view the host data set member
on the host using SCLM VIEW.

Browse Mode Specifies that you want to Browse the data set using the Browse
function. This function is useful for large data sets and data sets
that are formatted RECFM=U.

Data Set Password The password for OS password-protected data sets. This is not your
TSO user ID password.

Edit (Option 2)

The edit function is an interface to the ISPF editor. The SCLM editor ensures that
editing occurs only in development groups. SCLM automatically locks the member
when you begin the edit session.

The SCLM editor is the ISPF editor with an SCLM shell around it. Recursive
editing is not supported within SCLM. If the member has changed when you end
the edit session or if an explicit SAVE operation is performed, SCLM stores and
parses the edited member and stores its accounting record. You can only edit
members that reside in data sets under control of SCLM.

When you select the Edit option, the SCLM editor analyzes the hierarchy structure
for the specified project and displays the sequence of the groups in your library
concatenation. SCLM presents the four lowest key or primary groups for the
project previously specified in the project definition. The SCLM lock feature,
coupled with the PDF “draw down” feature, ensures that the member you want to
modify is the most current version of a component in the library concatenation.

SCLM copies or draws down the member or compilation unit to your development
library in the development group from its first appearance in a higher key or
primary group in the library concatenation. The member or compilation unit
remains locked until you delete it or promote it to a higher group.

SCLM Edit also supports editing host data sets on the workstation. SCLM Edit will
draw down the member if necessary, lock it, and copy it into working storage. The
data set name is converted to a workstation file name and that name is appended
to the workstation’s current working directory. The host data set is transferred to
the workstation, and the working file is then passed to the user’s chosen edit
program. When the user finishes the edit session, the working file is transferred
back to the host and stored in the SCLM development group. Accounting
information will then be saved for the member. The user will be prompted for a
language if the member is new or does not have a language. For more information
see the chapter on the ISPF Workstation Tool Integration Program in the ISPF
User’s Guide.

Figure 46 on page 149 shows the panel SCLM displays when you select Option 2,
Edit, from the SCLM Main Menu.

View (Option 1)

148 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|
|
|
|
|

SCLM Edit - Entry Panel Fields

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project.

Group The development group that you specified in the Group field on the
SCLM Main Menu. This group is followed by the next key group in
the hierarchy up to four groups.

The SCLM editor ensures that editing occurs only in development
groups by not allowing you to change the value of the first group
field. SCLM guarantees that the group is a valid development
library by verifying it against the specified project definition. (All
other displayed groups are in unprotected fields and you can alter
them.)

If the order of the groups is specified so that it does not match the
hierarchical view for the development group, SCLM does not allow
the edit session and displays the message “Invalid library order”. If
F1 is pressed twice, SCLM displays a panel showing all groups that
comprise the hierarchical view of the development group.

If you specify a group that is defined in the project definition but
not allocated, and then request a member list, the library (LIB)
numbers on the member list panel might not be what is expected.
SCLM treats an unallocated group as if the group field were blank
and ignores that group. When this situation exists, SCLM provides a
panel that shows how the LIB numbers correspond to the existing
groups.

Type The identifier for the type of information in the SCLM group, such
as SOURCE, ARCHDEF, or PANELS.

Figure 46. SCLM Edit - Entry Panel (FLMED#P)

Edit (Option 2)

Chapter 8. Using SCLM Functions 149

Member The name of an SCLM or non-SCLM controlled partitioned data set
member. Leaving this field blank or typing a pattern as a member
name causes SCLM to display a member list.

Initial Macro An edit macro to be processed before you begin editing. This initial
macro overrides any IMACRO value in your profile.

If you leave the Initial Macro field blank and your edit profile
includes an IMACRO specification, the initial macro from your edit
profile is processed.

If you want to suppress the processing of an initial macro in your
edit profile, enter NONE in the Initial Macro field. Refer to ISPF Edit
and Edit Macros for more information.

Profile Name The name of an edit profile that you can use to override the default
edit profile. Refer to ISPF Edit and Edit Macros for more information.

Confirm
Cancel/Move/
Replace

Allows you to specify whether a confirmation panel will appear for
these options.

Mixed Mode You can edit unformatted mixed data that contains both EBCDIC
(1-byte) characters and Double Byte Character Set (DBCS or 2-byte)
characters. To do this, you must specify Mixed Mode. When you
select Mixed Mode, the editor looks for shift-out and shift-in
delimiters surrounding DBCS data. If you do not select it, the editor
does not accept mixed data. If your terminal does not support
DBCS, SCLM Edit ignores the operation mode.

Edit on Workstation Select this option to edit the host data set member on the
workstation using the workstation editor configured in the ISPF
Tool Configurator. For more information see the chapter on the ISPF
Workstation Tool Integration Program in the ISPF User’s Guide Do
not select this option if you want to edit the host data set member
on the host using SCLM EDIT.

Preserve VB record
length

When you select this field with a ″/″, it specifies that the editor
store the original length of each record in variable length data sets
and when a record is saved, the original record length is used as the
minimum length for the record. The minimum length can be
changed using the SAVE_LENGTH edit macro command. The
editor always includes a blank at the end of a line if the length of
the record is zero or eight.

Change Code Optionally, you can specify a change code to indicate why you
updated the member. Change codes cannot contain commas.

Authorization Code Optionally, you can specify a current authorization code for the
member. If you do not specify an authorization code, the default
authorization code is used for the member. Authorization codes
cannot contain commas.

Parser Volume The specific volume ID in which SCLM stores output from the
SCLM parser. This field is not required.

Comparison of SCLM and ISPF Editors

The SCLM edit function provides an interface to the ISPF editor. For example, you
can specify a profile name and an initial macro before editing a member. With the
SCLM editor, you can lock or parse a member, create or update an accounting
record, and specify change or authorization codes. Recursive editing is only
allowed within the data set concatenation currently being edited. Therefore, the
member name to edit must be supplied as part of the edit command (see “EDIT
Command” on page 151).

Edit (Option 2)

150 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|
|
|
|
|
|
|
|
|

The parser supplied with SCLM does not recognize ISPF packed data. If the ISPF
pack mode is on, the parser supplied with SCLM returns statistical values
reflecting packed data. You must unpack the data before it is parsed by SCLM to
obtain correct statistical values.

When editing parts controlled by SCLM, it is important to use the SCLM editor.
The ISPF editor has a configuration table that supports three levels of awareness of
SCLM-controlled parts if trying to edit SCLM-controlled parts with the ISPF editor
(outside of SCLM):

No awareness ISPF edit allows SCLM members to be edited, with
no warning or message.

Warning Mode ISPF edit displays an SCLM WARNING message
when editing an SCLM-controlled member.
However, the ISPF edit will continue.

Fail Mode ISPF edit does not allow the edit to start on an
SCLM-controlled member.

If the ISPF editor is operating in Fail Mode, edit
recovery operates in Warning Mode for purposes
of the recovery; you will be able to recover the
member, and the SCLM WARNING message
appears.

PDF uses two checks to determine if a member is SCLM-controlled:
v The SCLM flag for the member is on (this is set by SCLM SAVE)
v A project.PROJDEFS.LOAD data set exists, where the high-level qualifier of the

data set being edited is equal to project.

When the configuration table has Fail Mode set, both conditions must be true for
the ISPF editor to operate in Fail Mode. If only the second condition is true, the
ISPF editor operates in Warning Mode.

SCLM Command Macros

The following sections describe the command macros available for use with the
SCLM editor.

EDIT Command

The SCLM EDIT command allows a user to recursively edit a member within the
same hierarchy concatenation of a SCLM supported type. That is, as long as the
member exists within the groups and type specified in the Group and Type fields
on the SCLM Edit - Entry panel, recursive editing is allowed.

Command Format:

Save Command

The SCLM SAVE command is similar to the ISPF Save command except that the
member is automatically parsed and the accounting record of the member is
created or updated.

Edit Member-name

Edit (Option 2)

Chapter 8. Using SCLM Functions 151

The first time you save a member that has not been created using the SCLM editor
(or migrated into SCLM), SCLM displays the SCLM Edit Profile panel (see
Figure 47 on page 154) for you to specify a change code and the language of the
member. The profile appears if SCLM has not been informed of the language of the
member. The member is saved regardless of the parser return code on the first
save.

The SCLM editor supports two modes of operation for SAVE, UPARSE and
USUBDD, that allow you to force save an Ada language member. Each of these
modes allows an Ada language member to be parsed or drawn down, or both,
even when it contains a compilation unit that already exists in another member at
a higher group in the hierarchy.

If you specify the UPARSE mode, SCLM parses the member and stores the
accounting information for that member.

If you specify the USUBDD mode, SCLM allows the compilation unit to be drawn
down to your group. You can specify either one or both modes.

Note: Be careful when you use these options to save an Ada member because
doing so can cause SCLM to track a compilation unit defined in two
different members. An explicitly stated save (typing SAVE on the Edit
command line) for a non-Ada language member has the same effect as a
save.

Command Format:

SCREATE Command

The SCLM SCREATE command is similar to the ISPF Edit CREATE command
except that the SCLM editor automatically creates an accounting record for the
created member, locks it out, and parses it.

If you do not enter a change code on the SCLM Edit - Entry panel (when one is
required), SCLM displays the SCLM Edit Profile panel shown in Figure 47 on
page 154. Also, if the language of the member you want to create differs from the
language of the member you are editing, enter the SPROF command on the Edit -
Entry panel. The SCLM Edit Profile panel appears so that you can specify another
language. Otherwise, the newly-created member has the same member attributes
as the current member.

Note: If the member to be created already exists in your group, SCLM returns a
message indicating that the member already exists. Thus you can avoid
inadvertently overwriting members.

The SCLM SCREATE command does not offer an extended panel for creating a
member outside the hierarchy.

Command Format:

SAVE [UPARSE] [USUBDD]

SCREATE member-name [label1 │ label2]

SCRE

Edit (Option 2)

152 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|
|
|

The label parameters indicate the lines from which the new member is created. For
example, assume that member OLD has been previously defined to SCLM. The
COBOL programming language is associated with member OLD. If you are editing
member OLD, place copy block (‘cc’) commands in the Line Command field
(usually represented by a six-digit number on the far left side of your edit screen)
of lines two and five of member OLD, and then issue the command

SCREATE NEW

from the command line. Member NEW will be added to the data set containing
member OLD. Furthermore, member NEW will contain lines two through five of
member OLD and will also inherit member OLD’s association with COBOL. In this
case, the block copy commands are the first and second labels passed with the
SCREATE command.

SMOVE Command

The SCLM SMOVE command is similar to the ISPF MOVE command except that
the SCLM editor deletes the accounting and build map information of the member
being moved if it exists in the development group from which the SMOVE was
issued.

The SCLM SMOVE command does not offer an extended panel for moving a
member from outside the hierarchy.

Note: Once a member is successfully moved, the source member of the move is
deleted. If you CANCEL out of the edit session where the SMOVE
command was initiated, the data is lost.

Command Format:

The AFTER label parameter indicates the line after which to place the member that
is being moved. To create an AFTER label, enter an “A” or “a” in the Line
Command field (usually represented by a column of six-digit numbers on the far
left side of your display) for the line you want.

The BEFORE label parameter indicates the line before which to place the member
that is being moved. To create a BEFORE label, enter a “B” or “b.” in the Line
Command field for the line you want.

SPROF Command

The SPROF command allows you to specify parameters that SCLM requires to
track a member through the hierarchy. SCLM displays the SCLM Edit Profile panel,
shown in Figure 47 on page 154, to specify a language for a new member. This
panel also displays when you end the edit session if you did not enter a change
code on the SCLM Edit - Entry panel when it is required, or if the language of the
member has not yet been specified.

SMOVE member-name [AFTER label]
[BEFORE label]

Edit (Option 2)

Chapter 8. Using SCLM Functions 153

SCLM Edit Profile Panel Fields

Language The language name to be used to process the member. This field is
required and must be the same as the LANG keyword specified on
the FLMLANGL macro.

Change code Specify a change code to indicate why you updated the member.
This field is optional unless a change code verification routine is
defined for the hierarchy. Change codes cannot contain commas.

You can change the information on this panel at any time during the edit session
by invoking SPROF. If you alter the Language field or modify the member, or
both, SCLM parses and creates or updates the accounting record of the member
when the member is saved. If you leave the language field blank or enter an
invalid language, SCLM displays a selectable list of valid languages defined to the
project.

SCLM processes the member and saves it in your development group if you alter
the language or change code and if the member does not exist in your
development library. If you alter the language or change code but do not modify
the member and it exists in the development group, SCLM regenerates only the
accounting information.

Enter END from the SCLM Edit Profile panel to end SCLM edit profile
specifications and return to the SCLM edit session. Enter CANCEL to cancel any
changes you have made on the panel, end SCLM edit profile specifications, and
return to the SCLM edit session.

SREPLACE Command

The SCLM SREPLACE command is similar to the ISPF Edit REPLACE command
except that the SCLM editor automatically parses, locks out, and creates an
accounting record for the replaced member. Use this command, not SCREATE,
when the member exists in the group.

Figure 47. SCLM Edit Profile (FLMEINFO)

Edit (Option 2)

154 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

|
|
|

If you do not enter a change code on the SCLM Edit Entry panel (when it is
required), SCLM displays the SCLM Edit Profile panel shown in Figure 47 on
page 154. Also, the replaced member has the same member attributes as the
current member.

If you use SREPLACE and specify a member that does not exist, SCLM calls
SCREATE by default so that you can create the member.

The SCLM SREPLACE command does not offer an extended panel for replacing a
member outside the hierarchy.

The label parameters indicate the lines from which the current member is replaced
by the replaced member. The label parameters are optional.

Command Format:

To see an example of using commands with labels, see “SCREATE Command” on
page 152.

Overriding SCLM Command Macros

Because the SCLM editor uses ISPF edit macros to perform its functions, you
should not override SCLM command macro definitions, especially the END, SAVE,
CANCEL, and RETURN macros. If you need a user-defined end macro, define an
alternate command name such as QUIT. At the end of this alternate end macro,
you must enter the END, RETURN, SAVE, or CANCEL command to start the
SCLM end routines.

If you override an SCLM macro by using DEFINE, the macro is not redefined until
you begin a new edit session.

You can also override SCLM edit macros by entering the ISPF/PDF BUILTIN
command (for example, BUILTIN SAVE).

Utilities (Option 3)

Figure 48 on page 156 shows the panel SCLM displays when you select option 3,
Utilities, from the SCLM Main Menu.

SREPLACE member-name [label1 │ label2]

SREPL

Edit (Option 2)

Chapter 8. Using SCLM Functions 155

When you select one of these options and press Enter, another panel appears,
determined by the option you selected. Figure 48 shows the available options:

Library See “Library Utility”.

Sublib Mgmt See “Ada Sublibrary Management Utility” on page 174.

Migration See “Migration Utility” on page 178.

Database Contents See “Database Contents Utility” on page 180.

Architecture Report See “Architecture Report Utility” on page 191.

Export See “Export Utility” on page 198.

Import See “Import Utility” on page 202.

Audit and Version See “Audit and Version Utility” on page 207.

Delete Group See “Delete Group Utility” on page 213.

Library Utility

The library utility allows you to browse accounting records, members, and build
map records. In addition, you can use this utility to delete members and their
accounting and build map data, edit and build members, and update authorization
codes.

The library utility is completely interactive and parallels the ISPF library utility.

Figure 49 on page 157 shows the SCLM panel that appears when you select Option
1, Library, from the SCLM Utilities panel.

Menu Utilities Help
--

SCLM Utilities Menu

1 Library View, browse, edit, delete, or build SCLM control
members and update member authorization codes

2 Sublib Mgmt Browse or delete intermediate records and forms
3 Migration Register the contents of a library with SCLM
4 Database Contents Create reports and tailored data sets against

SCLM database
5 Architecture Report Create architecture report
6 Export Extract SCLM accounting information
7 Import Incorporate exported data into the hierarchy
8 Audit and Version Display Audit and Version members
9 Delete Group Delete members, accounting records, build maps,

intermediate code and records from a group

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 48. SCLM Utilities (FLMUDU#P)

Utilities (Option 3)

156 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The fields on the SCLM Library Utility panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition. You cannot change the Project or the Alternate fields on
this panel.

Group The group that you specified in the Group field on the SCLM Main
Menu. The group field can be modified to specify other groups
defined to the project.

Type The identifier for the type of information in the ISPF library.

Member The name of an SCLM library member. You can display a member
list by leaving the Command field blank and the Member field
blank or by leaving the Command field blank and entering a
pattern as the member name. See “Specifying Selection Criteria” on
page 182 for details. Valid pattern characters are the asterisk (*) and
the logical NOT symbol (¬).

Select and rank
member list data

A one, two, or three character string that indicates the kind of
information that appears on the member list panel. You can specify
strings composed of the following characters: T, to display text data;
A, to display accounting data; and M, to display build map data.
Each character can only be used once. The order of the characters
determines the order of the data on the member list. This option
only limits the type of data that appears each member on the list.
All types of data that exist for a member at a particular level are
subject to processing by library utility commands.

Hierarchy view Selects as input the library entered on the panel, as well as all the
libraries in its hierarchy view. The hierarchy is searched from the
bottom up for the first occurence of the specified member. If you do
not select Hierarchy view, only the library entered on the panel is
used as input. This option is valid with all Library Utility - Entry
panel or member list commands except delete, which defaults to a
NO value.

Menu SCLM Utilities Help
--

SCLM Library Utility - Entry Panel
More: -

A Browse accounting record E Edit member
B Browse member V View member
M Browse build map C Build member

U Update authorization code

SCLM Library:
Project . : PROJ1 Alternate - INT
Group . . . USERID
Type SOURCE
Member . . . (Blank or pattern for member selection list)

Select and rank member list data . . TAM (T=TEXT, A=ACCT, M=BMAP)

Enter "/" to select option
/ Hierarchy view Process . . 3 1. Execute
/ Confirm delete 2. Submit
/ View processing options for Edit 3. View options
Command ===> ___

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 49. SCLM Library Utility (FLMUS#P)

Library Utility

Chapter 8. Using SCLM Functions 157

Confirm delete Allows you to specify whether you want a confirmation panel to
appear when attempting to delete objects (text, accounting
information, or build map information) with the SCLM library
utility. If you select this field, the Confirm Delete panel appears
every time you request a delete. If you do not select this field, the
Confirm Delete panel does not appear for deletions and data is
deleted without any additional user interaction.

View processing
options for Edit

Allows you to indicate whether you want to verify or update edit
processing options or allow them to default to the values that last
appeared on the Edit Data Entry panel. When you select this option,
the SCLM Edit Data Entry panel displays so that you can verify or
update edit processing options. If you do not select it, Edit options
default to those values that last appeared on the Edit Data Entry
panel. The panel does not appear.

Process The Process field allows you to specify the processing mode for
Build command. The value of the Process field is unique to the
library utility. You will not be carried to or from the Process field on
any other SCLM panel.

Execute
Invokes SCLM Build in the foreground. Build options
default to those values that last appeared on the Build Data
Entry panel. The panel does not appear.

Submit Invokes SCLM build in the background. Build options
default to those values that last appeared on the Build Data
Entry panel. The panel does not appear.

View options
Displays the SCLM Build Data Entry panel so that you
may verify or update build processing options prior to
execution.

Note: The value for Confirm delete is reset each time the library utility is entered.
The values for Select and rank member list data, Process, Hierarchy view,
and View processing options for Edit, are kept from session to session until
you change them.

Library Utility Commands

Type your selection in the Command field.

A, B, or M SCLM displays the specified member or record if it is present.

While in Browse, all Browse commands are supported. Note that
although a hierarchy view may be specified, the Library Utility only
allocates the data set containing the existing version of the
requested member. The Browse command executed from within
View can only operate on members within the allocated data set.

V SCLM displays the specified member if it is present.

D SCLM deletes all portions of the member such as text, accounting,
and build map records. Delete is only allowed at the group
specified on the Library Utility panel.

If you delete a member from a key group that also exists in a
non-key group in a higher layer of the hierarchy, you must delete
the member from the non-key group manually.

Library Utility

158 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

E The SCLM Editor is invoked for the member specified in the
Member field. A development group must be specified in the Group
field. Once in the SCLM Editor, all Edit commands are supported.
The library utility allocates the first four key groups for a project. If
the member exists at a higher group, the group containing the
member will be allocated, replacing the original fourth allocated
group. The COPY, MOVE, and EDIT commands can only operate
on members within the allocated data sets. The use of COPY or
MOVE from within an Edit session invoked from the utility is not
recommended.

C SCLM Build is performed on the specified member.

U SCLM displays an input panel and updates the authorization code
according to your input. Update is only allowed at the group
specified on the Library Utility panel. (To delete or update any data,
you must have at least UPDATE authority to the specified data set.)
Any value entered in the New authorization code field on the input
panel remains there until it is changed by the user or the library
utility is exited and re-entered. There is a brief period during which
changes made to a member’s authorization code by another session
or user will not be recognized. If you receive an unexpected error
message while updating a member’s authorization code, use the
browse accounting record command to check the member’s current
authorization code. If the authorization code needs to be updated,
try the update authorization code command again.

To browse, edit, delete, build, or update several members, use the member
selection list.

Member Selection List

You can delete, browse, or update members by making selections from a member
selection list. To display a member selection list, do the following:
1. Leave the Command field blank.
2. Type the group and type information in the appropriate fields. The Project field

contains the project you specified on the SCLM Main Menu. You cannot change
this field here.

3. Leave the Member field blank or enter a pattern.
4. Choose the data to appear and the order to display it on the member list panel

by entering a string in the Select and rank member list data field.
5. Indicate whether you want a hierarchy view by entering a slash (/) in the

Hierarchy view field.
6. Press Enter.

Note: Any changes that are made outside of the member selection list are not
reflected in the list until it is exited and re-entered. For example, if you
rename or delete a file, or add a member using PDF, you will not see these
changes in the list until you exit the list and display it again.

Figure 50 on page 160 shows the panel SCLM displays when you complete the
instructions for displaying a member list. This display contains text, accounting,
and build map data, indicating that the string ″TAM″ was entered for the Select
and rank member list data field. In this example, the A line command is invoked
for member FLM01MD5. Use the scroll commands or the LOCATE command to
scroll the list.

Library Utility

Chapter 8. Using SCLM Functions 159

Another way to view a member list is shown in Figure 51. In this example, the
string ″AT″ was specified for the Select and rank member list data field, causing
accounting and text data, in that order, to appear on the member list panel. Also
note that a hierarchy view was requested for this member list.

The fields that appear on the SCLM Member Selection List panel are:

Member The names of the members fitting the criteria you specified on the
SCLM Library Utility - Entry panel.

Figure 50. Member Selection List (FLMUSL#P)

Figure 51. Member Selection List with Hierarchy View (FLMUSL#P)

Library Utility

160 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Status SCLM displays the status of the member according to the line
command you select. The status field indicates the action that was
taken for the selected member. For example, a status of *EDITED
will appear next to any member for which the ’E’ command is
selected, even if the member is not saved. The status for delete
indicates the group at which the delete occurred. The status
displayed for each command is shown in the following example:

A Display an accounting record *BRACCT
B Browse a member *BRTEXT
C Build a Member *BUILT
D Delete a member *D-GROUP1
E Edit a member *EDITED
M Display a build map record *BRBMAP
U Update an authorization code *UPDATED
V View a member *VIEWED

When an error occurs or the member name is changed on the edit
or Build Data Entry panel, the status for the member will be blank.

Account A group name in this field indicates that the accounting information
for the associated member exists.

Language The language of the member appears in this column when
accounting data is requested and when space permits.

Text A group name in this field indicates that the member exists.

Chg Date The value of this field depends on the type of data requested for
display. When text data is requested, this field contains the last
change date for the member from the PDS directory. If accounting
data is requested but text is not, this field contains the change date
from the accounting record. If only build map data is requested, the
change date from the build map appears.

Chg Time The value of this field depends on the type of data requested for
display. When text data is requested, this field contains the last
change time for the member from the PDS directory. If accounting
data is requested but text is not, this field contains the change time
from the accounting record. If only build map data is requested, the
change time from the build map appears.

Bld Map A group name in this field indicates that the build map record for
the associated member exists.

Authcode The current authorization code for the member appears in this
column when accounting data is requested and when space permits.

Accounting Record

If you enter the A line command to display an accounting record, SCLM displays a
panel showing the information recorded for the member as shown in Figure 52 on
page 162.

Library Utility

Chapter 8. Using SCLM Functions 161

The display fields on the Accounting Record panel cannot be modified.

Use a slash (/) to select an option and press Enter to display additional panels.
You can browse the statistics or lists of change codes, includes, compilation units,
or user entries referenced by a member. You can also scroll the lists.

Physical Data Set The physical data set in which the SCLM-controlled member
actually resides. SCLM allows you to define project data sets that
don’t have conventional SCLM data set names by providing SCLM
aliases for them. When this is the case, the name appearing on the
panel title is the SCLM alias for the actual data set in the Physical
Data Set field.

Accounting Status The status of the member.

EDITABLE Members that you can edit

NON-EDIT Members that SCLM creates as a result of build
processing

LOCKOUT Members that are locked at the development
group in which they exist but have not been
parsed. You can use the SCLM Editor or Migration
Utility to change the status of these members to
EDITABLE before attempting to build or promote
them.

INITIAL Members for which a lock has been requested.
This status generally appears while a member is
being edited. When the edit is complete, the status
changes to EDITABLE.

Change User ID The user ID of the person who made the last update to the member.

PROJ1.USERID.CLIST(FLM1VP) : Accounting Record

More: -
Physical Data Set . : PROJ1.USERID.CLIST
Accounting Status . : EDITABLE Change Group : USERID
Change User ID . . : VEND107 Authorization Code . : BASE
Member Version . . : 3 Auth. Code Change . :
Language : PASCAL Translator Version . :
Creation Date . . . : 93/06/23 Change Date : 93/07/21
Creation Time . . . : 12:28:49 Change Time : 23:15:00
Promote User ID . . : USERID Access Key :
Promote Date . . . : 00/00/00 Build Map Name . . . :
Promote Time . . . : 00:00:00 Build Map Type . . . :
Predecessor Date . : 92/10/26 Build Map Date . . . : 92/08/25
Predecessor Time . : 11:19:23 Build Map Time . . . : 23:15:00

Enter "/" to select option
_ Display Statistics
_ Number of Change Codes : 4
_ Number of Includes : 0
_ Number of Compilation Units : 2
_ Number of User Entries : 0

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 52. Accounting Record (FLMUSA#P)

Library Utility

162 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Member Version The number of times that an EDITABLE member was drawn down.
The member version is also updated whenever the language of the
member is changed. For a NON-EDIT member, such as OBJ, it is
the number of times that the member was generated by SCLM.
New members use a version of 1.

Language The language of the member.

Creation Date The date the member was first registered with SCLM.

Creation Time The time the member was first registered with SCLM.

Promote User ID The user ID of the person who last promoted the member.

Promote Date The date the member was last promoted.

Promote Time The time the member was last promoted.

Predecessor Date The change date of the member that this member overlays when it
is promoted up the hierarchy.

Predecessor Time The change time of the member that this member overlays when it
is promoted up the hierarchy.

Change Group The name of the group in which the member was last updated.

Authorization Code The current authorization code for the member.

Auth. Code Change A non-blank value indicates that SCLM is attempting to update the
Authorization Code for this member. If the update completes
successfully, the value of this field becomes the new authorization
code of the member.

Translator Version The version of the translator used during build processing.

Change Date The last date a developer modified the member.

Change Time The last time a developer modified the member.

Access Key An identifier used to restrict access to a member.

Build Map Name For NON-EDIT members, this field specifies the name of the build
map that was created when the NON-EDIT member was created.
For EDITABLE members, this field is blank.

Build Map Type For NON-EDIT members, this field specifies the type of the build
map that was created when the NON-EDIT member was created.
For EDITABLE members, this field is blank.

Build Map Date The date used by SCLM to determine if the member has changed
since the last build. For EDITABLE members, this field is usually
the same as the Change Date field. When the Change Date field is
updated, the Build Map Date field is updated. For NON-EDIT
members, this field is the date of the last build of the member.

Build Map Time The time used by SCLM to determine if the member has changed
since the last build. For EDITABLE members, this field is usually
the same as the Change Time field. When the Change Time field is
updated, the Build Map Time field is updated. For NON-EDIT
members, this field is the time of the last build of the member.

Display Statistics SCLM displays the Accounting Record Statistics panel, shown in
Figure 53 on page 164.

Number of Change
Codes

The number of change codes entered against the member. See
Figure 54 on page 165

Number of Includes The number of include references in the source member. See
Figure 56 on page 167.

Number of
Compilation Units

The number of compilation units in the member. See Figure 57 on
page 168.

Library Utility

Chapter 8. Using SCLM Functions 163

Number of User
Entries

The number of user data entry records associated with the member.

Statistics

SCLM displays statistical information, as shown in Figure 53, when you enter a ″/″
in the Display Statistics field on the Accounting Record panel. These statistics are
parser-dependent.

The fields on the Accounting Record Statistics panel are:

Total Lines The total number of lines in the member, which is equal to the sum
of comment lines, noncomment lines, and blank lines.

Comment Lines The number of comment lines. A comment line is any line that has
comment information only. If a line has both a statement and a
comment, SCLM considers it a noncomment line.

Noncomment Lines The number of source lines. A noncomment line is a source line that
contains at least part of a noncomment statement. If a line has both
a statement and a comment, SCLM considers it a noncomment line.

Blank Lines The number of blank lines in the member. A blank line is
language-independent; no nonblank characters can be on it.

These statistics are parser-dependent.

Prolog Lines The number of prolog lines in the member.

Total Statements The sum of the comment statements and the noncomment
statements in the member.

PROJ1.USERID.CLIST(FLM01MD5) : Statistics

Statistics:
Total Lines . . . : 13 Total Statements . . . : 4
Comment Lines . . : 2 Comment Statements . . : 2
Noncomment Lines . : 5 Control Statements . . : 0
Blank Lines . . . : 6 Assignment Statements . : 0
Prolog Lines . . . : 0 Noncomment Statements . : 2

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 53. Accounting Record Statistics (FLMUSS#P)

Library Utility

164 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Comment Statements The number of comment statements. A comment statement is
denoted by a set of beginning and ending comment delimiters for
the particular language being parsed. If an ending delimiter is not
defined for a language, the end of the line is used. A comment
statement can span several lines, or several comment statements can
exist on a single line.

Control Statements The number of logical control statements.

Assignment
Statements

The number of assignment statements.

Noncomment
Statements

The number of complete statements that SCLM can process.
Noncomment statements are language-dependent, follow language
syntax rules, and are separated by the language delimiter. A
noncomment statement can span several lines, or several
noncomment statements can exist on a single line.

Note: The parser that is invoked for the member determines the field values. The
definitions apply for ISPF-supplied parsers.

Change Code List: Figure 54 and Figure 55 on page 166 are examples of the
information SCLM displays when you enter a ″/″ in the Number of Change
Codes field on the Accounting Record panel. If your are allowed to delete the
records you specify, Figure 54 is displayed. If not, you will see Figure 55 on
page 166.

PROJ1.USERID.CLIST(FLM01MD5): Change Code List_________ Row 1 to 4

Line Command: D - Delete change code
Enter Cancel command to exit without processing selections

Delete Status Change Code Change Date Change Time
------ ------ ----------- ----------- -----------

M36P2509 93/08/25 23:15:00
M35P2492 93/07/27 09:23:00
M35P0000 93/06/22 01:47:00
M35D167 93/06/11 15:23:00

******************************* Bottom of data ********************************

Command ===> ___ SCROLL ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 54. Change Code List - Deletable Records(FLMUSC#P)

Library Utility

Chapter 8. Using SCLM Functions 165

The fields on the Change Code List panel are:

Delete You specify that you want to delete the change code when you
enter D in this field. SCLM selects the change code for deletion.

Status SCLM displays *SELECT to indicate the change code you selected.
Enter the END command to confirm the delete request.

Change Code A value assigned to indicate why a member was updated.

Change Date The last date a developer modified the member for the associated
change code. The Change Date on the top of the list is the most
recent.

Change Time The last time a developer modified the member; it is associated
with the Change Date.

Include List: Figure 56 on page 167 is an example of the information SCLM
displays when you enter a ″/″ in the Number of Includes field on the Accounting
Record panel.

Figure 55. Change Code List - Nondeletable Records (FLMUSC2P)

Library Utility

166 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The fields on the Include List panel are:

Include The name of an include reference in the source member. An include
reference is a generic term for code that SCLM inserts when it
compiles the source member. The syntax of an include statement in
a program is language-dependent and is defined by language
syntax rules.

Include set The include-set name is used to associate an include with the types
in the hierarchy where that include can be found. The include-set
name is returned by the parser. A blank name indicates that the
include is associated with the default include set.

Compilation Units: When you enter a ″/″ in the Number of Compilations Units
field on the Accounting Record when more than one compilation unit exists, SCLM
displays a selection list as shown in Figure 57 on page 168. If there is only one
compilation unit, Figure 57 on page 168 is bypassed and instead SCLM displays the
Cross Reference Record as shown in Figure 58 on page 169.

PROJ1.USERID.CLIST(FLM01MD5) - Include List______________________________

Include Include-set
-------- -----------
INCLUDE3

******************************* Bottom of data ********************************

Command ===> ___ SCROLL ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 56. Include List (FLMUSI#P)

Library Utility

Chapter 8. Using SCLM Functions 167

The fields on the Compilation Units panel are:

Select SCLM displays the contents of the cross-reference record for the
selected compilation unit when you enter a ″S″ in this field.

Compilation Type The type of the compilation unit:
SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record SCLM creates for dependency tracking of main

procedures.

Compilation Unit
Name

The name of the compilation unit. A compilation unit is an Ada
language entity that compiles separately.

SCLM considers each compilation unit contained in an Ada source
member to be an entity. The PARSE service obtains dependency
information for each compilation unit. The compilation unit names
are not necessarily member names.

Cross-Reference Record: Figure 58 on page 169 is an example of the information
SCLM displays when you enter an ″S″ in the Select field on the Compilation Units
panel, or when you enter a ″/″ on the Accounting Record panel when only one
compilation unit exists.

(): Compilation Units__

Line Command: S - Select cross reference record for review

Compilation
Select Type Compilation Unit Name
------ ---- --
S BODY XPKG2

SPEC ADATEST
********************************Bottom of data ********************************

Command ===> ___ SCROLL ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 57. Compilation Units (FLMUSPAR)

Library Utility

168 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The fields on the Cross-Reference Record panel are:

Compilation Unit The name of the compilation unit.

Compilation Type The type of the compilation unit.

CU Qualifier The name of the compilation unit (CU) qualifier specified in the
language definition.

Accounting Member The member that generated this cross-reference record.

Accounting Type The type containing the source that generated this cross-reference
record.

Authorization Code The current authorization code for the cross-reference record.

Generic Flag A flag indicating whether this compilation unit contains an Ada
generic or an inline construct. This flag has one of four values:

v Generic. Ada generic constructs were present in the member.
v Inline. Ada pragma inline constructs were present in the member.
v Both. Both Ada generic and pragma inline constructs were

present in the member.
v Neither. Neither Ada generic nor pragma inline constructs were

present in the member.

Change Date The last date that the cross-reference record was modified.

Change Time The last time that the cross-reference record was modified.

PROJ1.USER1.SOURCE(ADAMEM) - Cross Reference Record

Compilation Unit . : XPKG2

Compilation Type . : BODY Authorization Code . : TEST
CU Qualifier . . . : ADACODE Generic Flag : GENERIC
Accounting Member . : FLM01MD1 Change Date : 93/11/22
Accounting Type . . : SOURCE Change Time : 11:45:28

Dependency Information
Depend-
ency Compilation
Type Type Dependency Name
---- ---- --

Up Spec XPKG1
Down Body XPKG2

Command ===> __ SCROLL ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 58. Cross-Reference Record (FLMUSX#P)

Library Utility

Chapter 8. Using SCLM Functions 169

Dependency Type The type of dependency the current compilation unit has: UP for
upward dependency and DOWN for downward dependency.

v A compilation unit has an upward dependency on the units it
references using the WITH language structure. It is a package or
procedure body that has an upward dependency on its
specification. An upward dependency member is processed before
a given member.

v A compilation unit has a downward dependency on the units it
references with the IS SEPARATE language structure. It is a
package or procedure specification that has a downward
dependency on its body. A downward dependency member is
processed after a given member.

Compilation Type The type of the compilation unit:
SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record SCLM creates for dependency tracking of main

procedures.

Dependency Name The name of a compilation unit on which this compilation unit has
a dependency.

User Data Entries: Figure 59 is an example of the information SCLM displays
when you enter a / in the Number of User Entries field on the Accounting Record
panel.

The fields on the User Data Entries panel are:

Del You specify that you want to delete the user data entry record when
you select D in this field.

Stat SCLM displays *SEL to indicate the user data entry record you
selected. Enter the END command to confirm the delete request.

PROJ1.PFS(FLM01MD5) : User Data Entries ______________________________________

Line Command: D - Delete User Data Entry
Enter Cancel command to exit without processing selections

Del Stat Rec# User Data Entry
--- ---- ---- --

1 This record is very long to prove that two lines can be shown
in one record.

2 This record is short.
********************************Bottom of data *******************************

Command ===> ___ SCROLL ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 59. User Data Entries (FLMUSE#P)

Library Utility

170 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Rec# SCLM displays a record number with the first line of each user data
entry record.

User Data Entry Project-specific information entered into the accounting record by
the SAVE service. The user data entry record can span two lines for
a maximum of 128 characters.

Build Map Record

Enter the M line command on the SCLM Library Utility panel or on the member
selection list to display a build map record. The Build Map Record panel, shown in
Figure 60, displays the fixed build map information SCLM records for a member.

The fields on the Build Map Record panel are:

Change User ID The user ID of the person who made the last update to the member.

Member Version The number of times that the build map has been generated by
SCLM. The first time a build map is generated a version of 1 is
used.

Language The language of the build member. This language is determined by
SCLM Build; it is not specified by the user or the project manager.

Creation Date The date the build map was first created.

Creation Time The time the build map was first created.

Change Group The name of the group in which the member was last updated.

Change Date The last date the member was modified.

Change Time The last time the member was modified.

Promote Date The date the member was last promoted.

Promote Time The time the member was last promoted.

Promote User ID The user ID of the person who last promoted the member.

PROJ1.USERID.CLIST(FLM01MD5): Build Map Record

General data:
Change User ID . : USERID Change Group . . : USERID
Member Version . : 2 Change Date . . . : 93/04/26
Language : CCMAP Change Time . . . : 10:12:23
Creation Date . : 93/04/26 Promote Date . . : 93/04/26
Creation Time . : 10:12:44 Promote Time . . : 10:13:10

Promote User ID . : USERID

Translator Version . : Build Map Date . : 93/04/26
Language Version . . : Build Map Time . : 10:12:44
Build Map Name . . . : FLM01MD5
Build Map Type . . . : SOURCE

Enter "/" to select option
/ Review Build Map Contents

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 60. Build Map Record (FLMUSB#P)

Library Utility

Chapter 8. Using SCLM Functions 171

Translator Version The version of the translator used during build processing.

Language Version The version of the language that SCLM uses in language-based
builds.

Build Map Name The name of the member with which the build map is associated.

Build Map Type The type of the member with which the build map is associated.

Build Map Date The date of the build that created the build map.

Build Map Time The time of the build that created the build map.

Review Build Map
Contents

SCLM displays the Build Map Contents panel, shown in Figure 61,
when you select this field.

Build Map Contents

When you enter a / in the Review Build Map Contents field, SCLM displays the
build map contents in a browse data set, as shown in Figure 61. The data set
shows the contents of a build map record for an architecture defined in a CC
architecture member.

The fields on the Build Map Contents panel are:

Keyword You can use certain keywords to identify architecture information.
See “Architecture Statements” on page 256 for more details. The
internal build map keywords, denoted with an asterisk, are
described as follows.

The architecture member example contains two keywords: OBJ, and
LIST. If a keyword is denoted with an asterisk (*), it includes
references found in source member FLM01MD5.

Member The name of the member referenced in the architecture member.

Type The name of the type containing the member.

BROWSE PROJ1.USERID.CLIST(FLM01MD5): Build Map Contents______ Line 00000000
********************************* Top of Data **********************************

Build Map Contents

Keyword Member Type Last Time Modified Ver
-------- ------------------------------------ -------- ------------------ ---
OBJ FLM01MD5 OBJ 93/08/27 14:36:00 1
LIST FLM01MD5 LIST 93/08/27 14:37:10 1
******************************** Bottom of Data ********************************

Command ===> __ Scroll ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 61. Build Map Contents (FLMUSBRP)

Library Utility

172 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Last Time Modified For an EDITABLE member, this field is the last time SCLM parsed
and stored the specified member. For SCLM-generated (NON-EDIT)
members, such as OBJ and LIST, this field is the last time SCLM
generated the member.

Internal Keywords Keywords that SCLM uses to track references. The internal keyword
I# indicates the group in which the members were first referenced.
The following internal keywords are produced by SCLM internal
processing and supported by SCLM. They cannot be used in the
actual architecture definitions.

Keyword Description

PINCL* An architecture definition that generates the
output shown on the previous build map entry.
The output represents an input to the translate
process.

INT* An intermediate that the build of the member
being viewed generated. This keyword represents
the output of a translate process.

INTDEP* Intermediate member on which the member being
viewed is dependent. This keyword represents the
input of a translate process.

WITH* Indicates an upward dependency.

DYNI* Indicates a dynamic include.

Ix* Includes as determined by the accounting record
for the main source member, where x is in the
range (1–99).

EXTDPEND* Indicates an external dependency.

Authorization Code Update

Type U on the Library Utility panel or the member selection list to display the
Authorization Code Update panel. Figure 62 on page 174 shows the panel SCLM
displays for you to update the authorization code for a member.

Library Utility

Chapter 8. Using SCLM Functions 173

The fields on the Authorization Code Update panel are:

Member to be
updated

The member name you entered in the Member field on the SCLM
Library Utility panel.

Old Authorization
Code

The current authorization code for the member.

New Authorization
Code

The new authorization code for the member.

Enter the new authorization code in this field. Then press Enter to
confirm the update request and update the authorization code, or
enter END to cancel the update request. Authorization codes cannot
contain commas.

Ada Sublibrary Management Utility

Use the Ada sublibrary management utility to browse Ada intermediate records or
delete Ada intermediate records and forms for compilation units. Ada intermediate
records are accounting records that SCLM tracks for the Ada intermediate form of
compilation units. The build function creates these records after a successful
compile.

To delete intermediate records and forms for compilation units, you must have
UPDATE authority to the specified sublibrary. Ada intermediate forms are stored
in sublibraries. SCLM deletes the intermediate form by invoking the Ada compiler
utilities.

Figure 63 shows the panel SCLM displays when you select Option 2, Sublib Mgmt,
from the SCLM Utilities panel.

Menu SCLM Utilities Help
- Auth Code Update -------

Menu SCLM Utilities Help of 114

SCLM Authorization Code Update Map

_ Member to be updated : PROJ1.USER1.SOURCE(FLM01MD5) ____
_ ____
_ Old Authorization Code . : REL ____
_ New Authorization Code . . ________ ____
_ ____
_ Command ===> ___ ____
_ F1=Help F2=Split F3=Exit F7=Backward F8=Forward ____
U F9=Swap F10=Actions F12=Cancel KY
_ ____
_ F21OPT1 ___________ SVT 08/23/93 21:52:00 SVT ________
_ F21OPT2 ___________ SVT 08/23/93 21:52:00 SVT ________
_ F22OPT17 ___________ SVT 08/23/93 21:52:00 SVT ________
_ V22OPT18 ___________ SVT 08/23/93 21:52:00 SVT ________
_ V22OPT19 ___________ SVT 08/23/93 21:52:00 SVT ________

Command ===> __ Scroll ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 62. Authorization Code Update (FLMUSU#P)

Library Utility

174 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The fields on the Sublibrary Management Utility panel are:

CU (Compilation
Unit) Qualifier

The name of the compilation unit qualifier specified in the language
definition. SCLM uses it to distinguish between different Ada
languages when searching for compilation unit dependencies.

Project The project that was specified on the SCLM Main Menu.

Group The group that was specified on the SCLM Main Menu.

Type The name of the type you want processed or an asterisk for all
types.

Member Selection List

You can browse intermediate records or delete intermediate records and forms for
compilation units by making selections from a member selection list. To display a
list of the Ada intermediate records, type:
v The cu qualifier in the CU Qualifier field
v The appropriate group in the Group field
v The appropriate type in the Type field or an asterisk (*) for all types in a given

group
You cannot delete any records from the member selection list if an asterisk (*) is
entered for the type.

SCLM displays the name of the compilation unit and its type on each line of the
member selection list, as shown in Figure 64. Use the scroll commands or the
LOCATE command to scroll the list. Compilation unit names up to 46 characters
can be located when the LOCATE command is specified as ’L name’.

Menu SCLM Utilities Help
--

Sublibrary Management Utility - Entry Panel

Press Enter to access panel to browse or delete Ada intermediate records and
forms.

Ada Database:
CU (Compilation Unit) Qualifier . . ADA12

SCLM Library:
Project . : PROJ1 Alternate - INT
Group . . . USERID__
Type MVS1ADA__ (Enter "*" for all types)

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 63. Sublibrary Management Utility (FLMUA)

Ada Sublibrary Management Utility

Chapter 8. Using SCLM Functions 175

The fields on the Member Selection List panel are:

Select SCLM selects one or more Ada intermediate records and forms for
processing when you type line commands D (for delete) or B (for
browse) in this field for the compilation units you want.

Figure 65 on page 177 shows the panel that appears when you enter
the B line command.

Status SCLM displays the delete selection status in this field if you typed D
in the Select field:

Indicates the compilation unit you want to delete.

SCLM cannot delete the selected compilation unit
intermediate record or form because an error
occurred.

SCLM records detailed error information in a
temporary data set. Type the HELP command (the
default is the F1 key) to obtain the name of this
data set.

Compilation Type The type of the compilation unit:
SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record SCLM creates for dependency tracking of main

procedures.

Compilation Unit
Name

The name of the compilation unit.

PROJ1.USER1.SOURCE.ADACODE - Intermediate Records

Line Commands: B - Browse intermediate record
D - Delete intermediate record and intermediate form

Compilation
Select Status Type Compilation Unit Name
------ ------ ---- ---
BODY FLMLA SPEC FLMLA

XREF FLMLA
BODY PARSE
SPEC PARSE
BODY PARSE.DO ACCEPT

********************************Bottom of data *************************

Command ===> __ Scroll ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

Figure 64. Member Selection List (FLMUAM#P)

Ada Sublibrary Management Utility

176 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Intermediate Record

SCLM displays the contents of the intermediate record for the selected compilation
unit, shown in Figure 65, when you type B in the Select field on the Intermediate
Record Member Selection List panel.

The fields on the Intermediate Records panel are:

Compilation Unit The name of the compilation unit.

Compilation Type The type of the compilation unit:
SPEC Specification of the compilation unit
BODY Body of the compilation unit
XREF A record created for dependency tracking of main

procedures.

Change User ID The user ID of the person who made the last update to the member.

Creation Date The date that the intermediate form was first generated by SCLM.

Creation Time The time that the intermediate form was first generated by SCLM.

Change Date The last date that the intermediate form was generated by SCLM.

Change Time The last time that the intermediate form was generated by SCLM.

Member Version The number of times the member was updated. (A version of 1 is
used for new members.)

Language The language of the member.

Translator Version The version of the translator.

Change Group The name of the group in which the member was last updated.

Map Name The name of the map that created the member.

Map Type The name of the type containing the map.

Accounting Member The member that generated this compilation unit.

PROJ1.USERID.PFS : Intermediate Records
Command ===> ___

Compilation Unit . : FLMLA

Compilation Type . : BODY

History:
Change User ID . : USERID
Creation Date . : 90/01/24 Change Date . : 93/03/20
Creation Time . : 10:24:34 Change Time . : 11:01:30

General Information:
Member Version . . . : 1
Language : ADA
Translator Version . : 3
Change Group : USERID
Map Name : FLMLA Accounting Member . : FLMLA
Map Type : MVS1ADA Accounting Type . . : MVS1ADA

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

Figure 65. Intermediate Records (FLMUAITR)

Ada Sublibrary Management Utility

Chapter 8. Using SCLM Functions 177

Accounting Type The type that generated this compilation unit.

Migration Utility

Using the migration utility, you can introduce members or groups of members to
an SCLM project and place them under SCLM control in a development group.
The migration utility also lets you verify authorization codes, prohibit
simultaneous updates of members, and collect statistical, dependency, and
historical information for each member processed without using the SCLM edit
function. SCLM collects dependency information, which identifies software
components that need another software component to complete successfully.

Before you start MIGRATE, the members must exist in the development library
you specify. Upon successful completion of MIGRATE, each member selected will
have valid SCLM accounting information. A typical scenario used to migrate
existing project data follows:
1. Copy all of the members that have the same language into a development

library.
2. Start MIGRATE using * for the member pattern and the appropriate language

to parse all members and store their statistical, dependency, and historical
information.

3. Copy all of the members that have a different language into the development
library.

4. Start MIGRATE again using * for the member pattern and the new language.
5. Continue until all of the members have been migrated.

If some of the members have SCLM accounting information, the MIGRATE service
verifies that the accounting information matches the member in the development
library. MIGRATE takes no action for members that already have valid SCLM
accounting information, unless executed in forced mode.

Use this utility when you have a large number of members that have not been
entered in your project database, such as members that you did not create with the
SCLM edit function.

In addition to the SCLM editor, the Migration Utility lets you indicate the members
you want tracked. Use this utility to enter one or more members into a database of
a project (for example, during a conversion to SCLM). In development groups, you
can also use it to lock, parse, and create accounting records for members that have
not been registered to SCLM.

Like the SCLM editor, the migration utility verifies authorization codes, prohibits
simultaneous updates of members, and collects statistical, dependency, and
historical information for every member processed. SCLM stores this information
in the database of a project. For a complete description of the lock, parse, and store
process, refer to the SCLM Reference.

Figure 66 on page 179 shows the panel that appears when you select Option 3,
Migration, from the Utilities Panel.

Ada Sublibrary Management Utility

178 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The action bar displays the same choices as those discussed in “SCLM Main Menu
Action Bar Choices:” on page 144. An additional choice is Jobcard.

The fields for the Migration Utility - Entry panel are:

Project The project that you specified on the SCLM Main Menu. You cannot
change this field. An Alternate field also appears if you specified an
alternate project.

Group The group in which the members to be migrated are located. This
group must be defined in the project definition and must be a
development group.

Type The type in which the members to be migrated are located. This
type must be defined in the project definition.

Member The name of the member you want processed. You can use patterns
for the member name. See “Specifying Selection Criteria” on
page 182 for details.

Authorization code The authorization code for a member. SCLM cannot process a
member if the authorization code assigned to a member is not in
the group being accessed. Authorization codes cannot contain
commas.

Change code The ç for the member. To enter a different ç for the member, type
over the displayed ç. A change code verification routine can verify
the code you entered before it processes the member. Change codes
cannot contain commas.

Language The language of the member. Refer to the SCLM Reference for a list
of languages for which SCLM supplies parsers.

Menu SCLM Utilities Jobcard Help

SCLM Migration Utility - Entry Panel

Selection criteria:
Project . : PROJ1 Alternate - INT
Group . . . USERID
Type SOURCE
Member . . . FLM01MD* (Pattern may be used)

Member information:
Authorization code . . REL Mode . . . 1 1. Conditional
Change code 2 2. Unconditional
Language PASCAL 3. Forced

Output control:
Ex Sub Process . . 2 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Listings . . 3 3 2. Printer

3. Dataset Printer . . _
4. None Volume . . ______

Command ===> __
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 66. SCLM Migration Utility (FLMUM#P)

Migration Utility

Chapter 8. Using SCLM Functions 179

Mode Select one of the following:

Conditional
To stop processing members if migrate discovers an error
that is greater than the GOODRC parameter specified for a
language parser in the project definition.

If you have a list of members that you want to place under
SCLM control, and migrate fails for one of those members,
processing stops after the first error. Migrate does not
process any other members that match the specified
criteria.

Unconditional
To continue processing regardless of errors discovered
during parsing of each member.

If you have a list of members that you want to place under
SCLM control, migrate attempts to process all the members
matching the selection criteria, regardless of any errors
encountered.

Forced Forces SCLM to create a new accounting record for the
members specified regardless of previous status. Processing
will stop after the first error is encountered.

If you have a list of members that need to be changed,
migrate will create new accounting records for any
members specified. This can be used to update language,
authorization code or change code information for the
specified members.

Output control Specify the destination for messages and listings when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4
for None.

Process You can call the processing part of the migration utility from the
interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information that is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see “Batch Processing” on page 232.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Database Contents Utility

You can use the SCLM database contents utility to retrieve information about the
project hierarchy from the project database and produce a report. You control the
order and format of the data in the report. The utility generates a report that lists
the members that match your selection criteria.

This accounting data can then be extracted for members in the database that meet
the selection criteria you specify.

The output from the database contents utility can be used as input to other
project-defined tools or as input to the SCLM services using the FILE format of
FLMCMD.

Migration Utility

180 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Figure 67 shows the panel that appears when you select Option 4, Database
Contents, from the Utilities panel.

You can use patterns for all of the selection criteria fields (except Project and
Alternate), as described in “Specifying Selection Criteria” on page 182.

The fields on the Database Contents Utility panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project.

Group The groups that are to be reported. Only groups defined to the
project definition are allowed.

Type The name of the type you want processed. Only types defined to
the project definition are allowed.

Member The name of the member you want processed.

Change additional
selection criteria

Select this field if you want to change the additional selection
criteria. The panel shown in Figure 68 on page 183 appears when
you select this.

If you change additional selection criteria, the changes are carried
over from one execution to another. If you do not select this field,
and thus do not change the additional criteria, the criteria from the
last report are used.

Menu SCLM Utilities Jobcard Help
--

SCLM Database Contents Utility - Entry Panel

Selection criteria: (Patterns may be used)
Project . . : PROJ1 Alternate - INT
Group USERID . . . ________ . . . ________

. ________ . . . ________
Type *
Member . . . *

Enter "/" to select option
/ Change additional selection criteria

Output control:
Ex Sub Process . . 1 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer
Tailored . . 3 3 3. Dataset Printer . .

4. None Volume . . ______

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 67. SCLM Database Contents Utility (FLMRC#P)

Database Contents Utility

Chapter 8. Using SCLM Functions 181

Output control Specify the destination for messages, reports, and tailored output
when they are executed (Ex) or submitted (Sub), by entering the
corresponding destination number: 1 for Terminal, 2 for Printer, 3
for Data set, or 4 for None. You cannot select Terminal for both
Report and Tailored Output. Similarly, you cannot select None for
both Report and Tailored Output. If the tailored output is to be
used as input to a tool or to the SCLM services, Data set should be
specified for Tailored Output.

If you enter Terminal, Printer, or Data set in the Tailored Output
field, the panel shown in Figure 70 on page 187 appears.

Process You can call the processing part of the database contents utility
from the interactive or batch environment by selecting Execute or
Submit, respectively. If you request batch processing by selecting
Submit, you must specify the job statement information that is used
in the JCL generated for batch processing.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

For information on using a unique jobname on the jobcard in batch
processing, see “Batch Processing” on page 232.

Specifying Selection Criteria

You can use patterns to specify a variety of acceptable values for the accounting
information fields. A pattern consists of alphanumeric characters and three special
characters: an asterisk (*), a logical NOT symbol (¬), and an equal sign (=).

Use an asterisk to match any string of characters including the null string. You can
use it more than once.

Use the logical NOT symbol (¬) to negate the result of a match with the pattern.
You can specify it only once. The logical NOT symbol is removed from the pattern
before a match is attempted. Therefore, the position of the logical NOT symbol
within the pattern is not significant.

Use an equal sign (=) to indicate all groups that are at the same layer in the
hierarchy as the group you specify. An equal sign can only be specified once in the
pattern.

You should use the equal sign only in the group field, and you should not use the
equal sign in conjunction with other wildcard characters. If you use the equal sign,
you must specify a valid group name. The name specified is taken literally.

Note: Do not use an equal sign (=) as the first character in a pattern because it is a
special character in ISPF.

Use the patterns shown in Table 13 to select accounting information.

Table 13. Pattern Examples

Pattern Match

AB*Z ABZ,ABCZ,ABCZYZ,ABCABZ

¬AB*Z ABC,XABZ,ABZX

*AB*Z ABZ,XABZ,ABCABZ,ABCZ,ABCZYZ

DEV1= DEV1,DEV2

Database Contents Utility

182 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 13. Pattern Examples (continued)

Pattern Match

STAGE1= STAGE1,STAGE2

Note: See Figure 43 on page 141 for an illustration of the hierarchy represented in the last
two rows.

The portion of the project database that SCLM displays is determined by the
parameters you specify.

The panel in Figure 68 appears if you select Change additional selection criteria
field on the Database Contents Utility panel.

If you do not select this, the panel does not appear and the reports are generated
with the values that already exist on the Additional Selection Criteria panel.

The fields on the Additional Selection Criteria panel allow you to specify
accounting and architecture information that the utility uses to identify the
members to be processed.

Accounting Information Fields

When you specify values or patterns for the accounting information fields, the
utility selects any member that has accounting information matching all of the
patterns or values for all fields you specify.

Menu
--

SCLM Database Contents - Additional Selection Criteria

Selection criteria: (Patterns may be used)
Authorization code . . REL Data type . . 1 1. Account
Change code * 2. Build map
Change group USERID 3. Both
Change user id *
Language * Enter "/" to select option

/ First occurrence only
Hierarchy search information:

Architecture Control . . 3 1. In Scope . . 1 1. Normal
2. Out 2. Subunit
3. Not used 3. Extended

Architecture Group . . . USERID
Architecture Type . . . ARCHDEF
Architecture Member . .

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 68. SCLM Database Contents - Additional Selection Criteria (FLMRCA)

Database Contents Utility

Chapter 8. Using SCLM Functions 183

Use the following accounting information fields to select members:

Authorization code Members that are assigned an authorization code matching the
authorization code. Authorization codes cannot contain commas.

The logical NOT symbol (¬) in the pattern specifies only the
members that are not assigned an authorization code matching the
pattern.

Change code Members that can be edited that were assigned a change code
matching the change code pattern. Change codes cannot contain
commas.

Only one of the change codes assigned to the member must match
the pattern. The logical NOT symbol (¬) in the pattern specifies only
the members that are not assigned a change code matching the
pattern.

Change group Members that were last changed in a group matching the change
group pattern.

Change user id Members that were last changed by the user ID matching the
change user ID pattern.

Language Members whose language matches the language pattern.

Data type Specify the following:
Account To report exclusively on accounting information.
Build Map To report exclusively on build map information.
Both To report on build map and accounting

information.
Data type defaults to Account if nothing is specified.

First occurrence only If you select this and use more than one group pattern, a
precedence system determines which members are selected.

The group1 pattern takes precedence over the group2 pattern,
which takes precedence over the group3 pattern, and so on. If
SCLM finds versions of a member in groups matching more than
one pattern, it selects only the version at the group with the most
precedence. If more than one version of the member matches the
pattern with the most precedence, it selects all of those versions.

If you do not select this field, SCLM selects all versions of all
members.

Hierarchy search information

These fields allow you to use architecture definition criteria to select members. The
architecture definition fields identify subapplications or software components.

To guarantee correct data, use the build function to update the architecture in the
Architecture Control field. If you specify an architecture that has never been built,
none of the members is selected. If you specify an architecture that has been built
but is out of date, the resulting data is inaccurate. Promote the architecture in
report-only mode to see which components are out of date. Patterns are not valid
for architecture definition fields.

Database Contents Utility

184 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Architecture Control Specify the following:

In To select members controlled by the architecture
definition.

Out To select members not controlled by the
architecture definition.

Not used To indicate that an architecture definition is not
used to identify selected members.

Architecture Group The group identifying the lowest group in the hierarchy where
SCLM should find the architecture definition.

Architecture Type The type containing the architecture definition that controls the
selected members.

Architecture Member The member containing the architecture definition that controls the
selected members.

Scope Specify the following architecture scope:

Normal
To select members that do or do not have compilation unit
dependencies.

Subunit
To select members that do have compilation unit dependencies.

Extended
To select members that do have compilation unit dependencies.

The database contents report contains a list of all members that you select from the
selection criteria. If you request tailored output, SCLM generates the data set from
this list of accounting and build map information.

Figure 69 on page 186 shows an example of a database contents utility report that
SCLM generates when you enter NONE in the Tailored Output field on the SCLM
Database Contents Utility panel.

Database Contents Utility

Chapter 8. Using SCLM Functions 185

Note: An asterisk (*) next to the group name on a report indicates that the
member represents build map information.

Tailored Output

If you want to tailor the database contents output, enter Terminal, Printer, or
Dataset in the Tailored Output field on the Database Contents Utility panel. The
Customization Parameters panel appears, shown in Figure 70 on page 187, which
you use to generate the tailored output.

Figure 69. Database Contents Utility Report (Part 1 of 2)

Figure 69. Database Contents Utility Report (Part 2 of 2)

Database Contents Utility

186 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The fields on the Customization Parameters panel are:

Report name The title of the report in the tailored output. The maximum length
is 35 characters. Do not use commas in this field. The default value
for Report name is STATISTICS REPORT.

Report line format The format of a line of data in the tailored output. The line format
can be up to 160 characters long.

Report line format has a default value, which is used when no
values are specified:

@@FLMMBR @@FLMLAN @@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS
@@FLMNCS

If you use SCLM variables with data lengths greater than 8
characters, remember that their values can exceed 8 characters.
Place these variables at the end of the report line to ensure that the
columns in the report line up evenly.

You can use any string or character as a literal. When you use
literals, the string prints once on each output line.

The report line has a maximum size of 2048 characters. The tailored
output prints 80 characters per line. This can produce multiple
80-character lines for one report line.

Press Enter to confirm these requests or enter END to cancel them.

Menu

SCLM Database Contents - Customization Parameters

Report name STATISTI
Report line format . . . @@FLMMBR @@FLMLAN @@FLMCML @@FLMNCL @@FLMBL

MTLS @@FLMCMS @@FLMNCS

Enter "/" to select option
/ Page headers
/ Show totals

Command ===> __
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 70. SCLM Database Contents - Customization Parameters (FLMRCT)

Database Contents Utility

Chapter 8. Using SCLM Functions 187

Page headers Select Page headers to include page and column header information
in the tailored output. If you want to output a page header, input
parameter information appears in the tailored output. You can also
specify a title. Data will be positioned in column 2 of the tailored
output. Column 1 is used for carriage returns.

If you do not select Page headers, page headers and carriage
returns are suppressed. The data will be positioned in column 1 of
the tailored output.

The default value for Page headers is that they are selected.

Show totals Select this to total the numeric data fields and show the totals in the
tailored output. SCLM outputs a summary line at the end of the
output that totals the values of the numeric fields in the output. The
output also includes a count of the number of members reported.
The default value for Show totals is that they are selected.

Figure 71 shows an example of a tailored output. The title of the report is Sample
Report. The report line format, specified as @@FLMPRJ @@FLMGRP @@FLMTYP @@FLMMBR,
causes the utility to generate output consisting of the members reported in the
database contents report and their associated included members.

Tailored Output Examples

The tailored output that appears in Figure 71 on page 189 is a formatted
representation of the accounting and build map information of the members that
matched the selection criteria. The tailored output format specification consists of
SCLM variables and constant values. The tailored output displays the SCLM
variables as headers over the lines of variable values.

The ISPF Software Configuration and Library Manager (SCLM) Reference provides a list
of SCLM variables that can be used in the database contents utility.

Database Contents Utility

188 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The tailored output examples in figures 72 through 75 show examples of change
code, accounting statistics, source listing, and cleanup reports.

Change Code Report: The report name is CHANGE CODE REPORT.

The report line format input for this example is: @@FLMGRP @@FLMTYP @@FLMMBR
@@FLM$CD @@FLM$CC. The page headers appear on all pages of the report. Totals do
not appear. Figure 72 on page 190 shows the tailored output.

Figure 71. Database Contents Utility Tailored Output

Database Contents Utility

Chapter 8. Using SCLM Functions 189

Accounting Statistics Report: The report name is ACCOUNTING STATISTICS
REPORT.

The report line format input for this example is: @@FLMMBR @@FLMLAN @@FLMTLL
@@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS.

The page headers appear on all pages of the report. Totals appear for all numeric
data. Figure 73 shows the tailored output.

Source Listing Report: This example shows a generated script data set that the
SCRIPT/VS processor can process.

The report line format input for this example is: .IM @@FLMMBR.

The report does not have page headers, totals, or a name. Figure 74 shows the
tailored output.

Figure 72. Change Code Report, Page 2

Figure 73. Accounting Statistics Report, Page 2

Figure 74. Source Listing Report

Database Contents Utility

190 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Cleanup Report: The cleanup data set is a command data set that can be passed
as input to the SCLM command processor. See ISPF Software Configuration and
Library Manager (SCLM) Reference for more information on the SCLM command
processor.

The report line format input for this example is:
DELETE,@@FLMPRJ,@@FLMALT,@@FLMGRP,@@FLMTYP,@@FLMMBR.

The report does not have page headers, totals, or a name. Figure 75 shows the
sample tailored output.

Architecture Report Utility

The architecture report provides listings of all the components in a given
application. The report generator examines the requested architecture and all of its
references, and then constructs a formatted report. The report lists software
components in each type referenced by the architecture. One advantage of the
report is that it helps you to eliminate unnecessary code. The title page of the
report identifies the date and time SCLM generated the report, names the
architecture member you requested, and is based on the report cutoff you select. It
also identifies any alternate project definition used.

The report is divided into two sections:
v Architecture

Lists all architecture and source members subordinate to a given architecture to
the report cutoff you specify. The architecture information is particularly useful
during the development stages of a project to identify the current status of the
application architecture. It is also useful at any time to determine a list of the
software components of an application.
The report uses an indentation format to present a visual concept of the
structure of the application. It also lists the number architecture types processed.

v Cross-reference
Lists all the members, by type, that are referenced by members in the first part
of the report. Use this information to determine the origin of a member.

Figure 77 on page 194 shows an example of an architecture report.

SCLM displays the panel in Figure 76 on page 192 when you select Option 5,
Architecture Report, on the Utilities panel.

Note: Compilation unit dependencies are not used to generate the architecture
report.

The architecture report is divided into three parts: a header, architecture
information, and cross-reference information. The architecture report header lists
the accounting and architecture selection criteria plus the customization parameters
you specify. The architecture information lists all of the software components, by

Figure 75. Cleanup Report

Database Contents Utility

Chapter 8. Using SCLM Functions 191

type, in a specified application. This part of the report can help you eliminate
unnecessary code. The cross-reference information indicates where a given
software component is imbedded in the architecture of the application.

The fields on the SCLM architecture report Utility - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The group used to identify the lowest group in the hierarchy where
the architecture begins.

Type The type containing the architecture definition that controls the
selected member.

Member The member containing the architecture definition.

Menu SCLM Utilities Jobcard Help
--

SCLM Architecture Report Utility - Entry Panel

Report input:
Project . : PROJ1 Alternate - INT
Group . . . USERID
Type Report
Member . . . Cutoff . . 6 1. HL

2. LEC
3. CC
4. Generic
5. Top Source
6. None

Output control:
Ex Sub Process . . 1 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer

3. Dataset Printer . .
4. None Volume . . ______

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 76. SCLM Architecture Report (FLMRA#P)

Architecture Report Utility

192 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Report Cutoff You must specify one of the following report cutoff values (which
determine the depth of the report):

HL (High-level)
To list only the HL architecture members in the application
represented by the architecture member you specified in the
Member field.

LEC (Linkedit control)
To list all of the HL and LEC architecture members in the
application represented by the architecture member you
specified in the Member field.

CC (Compilation control)
To list all of the HL, LEC, CC, Generic, and INCLD’ed
members in the application represented by the architecture
member you specified in the Member field.

GEN (Generic)
To list all of the HL and generic architecture members in the
application represented by the architecture member you
specified in the Member field.

Top Source
To list all of the HL, LEC, CC, Generic, and INCL’ed members
and the top source members in the application represented by
the member you specified in the Member field.

None
To list all HL, LEC, CC, and generic architecture members in
each of the types and all source member names down to the
lowest include group in the application represented by the
architecture member you specified in the Member field.

The default value for Report Cutoff is None.

Output control Specify the destination for messages and report when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4
for None.

Process You can call the processing part of the architecture report utility
from the interactive or batch environment by selecting Execute or
Submit, respectively. If you request batch processing by selecting
Submit, you must specify the job statement information that is used
in the JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see “Batch Processing” on page 232.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Architecture Report Example

Figure 77 on page 194 shows an example of the architecture report with a report
cutoff of NONE. Figure 78 on page 197 shows an example of the architecture report
with a report cutoff of LEC.

The architecture report provides lists of all the components in an application. The
title page identifies the date and time the report was generated, the architecture
member requested, and the report cutoff. It also identifies the alternate project
definition, if specified.

Architecture Report Utility

Chapter 8. Using SCLM Functions 193

**
**
** **
** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **
** **
** ARCHITECTURE REPORT **
** **
** 93/12/25 00:01:30 **
** **
** **
** **
** PROJECT: PROJ1 **
** GROUP: DEV1 **
** TYPE: ARCHDEF **
** MEMBER: FLM01SB2 **
** CUTOFF: NONE **
** **
** **
**
**
==
* *
* ARCHITECTURE REPORT *
* *
* H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E = ERROR *
* L = LINKEDIT CONTROL G = GENERIC I = INCLUDED D = DEFAULT *
* *
==

CODE: H MEMBER: FLM01SB2

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+---

H FLM01SB2 ARCHDEF
L FLM01LD4 ARCHDEF
D FLM01MD4 SOURCE
T FLM01MD4 SOURCE
I FLM01EQU SOURCE
D FLM01MD6 SOURCE
T FLM01MD6 SOURCE
I FLM01EQU SOURCE
D FLM01MD5 SOURCE
T FLM01MD5 SOURCE
I FLM01EQU SOURCE
L FLM01LD3 ARCHDEF
D FLM01MD3 SOURCE
T FLM01MD3 SOURCE
I FLM01EQU SOURCE
D FLM01MD6 SOURCE
T FLM01MD6 SOURCE
I FLM01EQU SOURCE
D FLM01MD5 SOURCE
T FLM01MD5 SOURCE
I FLM01EQU SOURCE

NUMBER OF HIGH LEVEL MEMBERS PROCESSED = 1
NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED = 2
NUMBER OF GENERIC MEMBERS PROCESSED = 0

Figure 77. Architecture report with cutoff of NONE (Part 1 of 3)

Architecture Report Utility

194 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

NUMBER OF DEFAULT MEMBERS PROCESSED = 4
NUMBER OF COMPILATION CONTROL MEMBERS PROCESSED = 0
NUMBER OF TOP MEMBERS PROCESSED = 4
NUMBER OF INCLUDED MEMBERS PROCESSED = 1
NUMBER OF ERROR MEMBERS FOUND = 0
==
* *
* CROSS REFERENCE FOR TYPE: SOURCLST *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
------ --------------- ---- ------- -----------

FLM01MD3 FLM01MD3 SOURCE LIST
FLM01MD4 FLM01MD4 SOURCE LIST
FLM01MD5 FLM01MD5 SOURCE LIST
FLM01MD6 FLM01MD6 SOURCE LIST

TOTAL MEMBERS PROCESSED FOR TYPE = 4

==
* *
* CROSS REFERENCE FOR TYPE: OBJ *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
------ --------------- ---- ------- -----------

FLM01MD3 FLM01MD3 SOURCE OBJ
FLM01MD4 FLM01MD4 SOURCE OBJ
FLM01MD5 FLM01MD5 SOURCE OBJ
FLM01MD6 FLM01MD6 SOURCE OBJ

TOTAL MEMBERS PROCESSED FOR TYPE = 4

==
* *
* CROSS REFERENCE FOR TYPE: SOURCE *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
------ --------------- ---- ------- -----------

FLM01EQU FLM01MD4 SOURCE I1
FLM01MD4 SOURCE
FLM01MD3 SOURCE I1
FLM01MD3 SOURCE
FLM01MD6 SOURCE I1
FLM01MD6 SOURCE
FLM01MD5 SOURCE I1
FLM01MD5 SOURCE

FLM01MD3 FLM01MD3 SOURCE SINC
FLM01MD3 SOURCE PROM
FLM01LD3 ARCHDEF INCLD

FLM01MD4 FLM01MD4 SOURCE SINC

Figure 77. Architecture report with cutoff of NONE (Part 2 of 3)

Architecture Report Utility

Chapter 8. Using SCLM Functions 195

FLM01MD4 SOURCE PROM
FLM01LD4 ARCHDEF INCLD

FLM01MD5 FLM01MD5 SOURCE SINC
FLM01MD5 SOURCE PROM
FLM01LD4 ARCHDEF INCLD
FLM01LD3 ARCHDEF INCLD

FLM01MD6 FLM01MD6 SOURCE SINC
FLM01MD6 SOURCE PROM
FLM01LD4 ARCHDEF INCLD
FLM01LD3 ARCHDEF INCLD

TOTAL MEMBERS PROCESSED FOR TYPE = 22
==
* *
* CROSS REFERENCE FOR TYPE: LMAP *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
------ --------------- ---- ------- -----------

FLM01LD3 FLM01LD3 ARCHDEF LMAP
FLM01LD4 FLM01LD4 ARCHDEF LMAP

TOTAL MEMBERS PROCESSED FOR TYPE = 2

==
* *
* CROSS REFERENCE FOR TYPE: LOAD *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
-------- --------------- -------- -------- -----------

FLM01LD3 FLM01LD3 ARCHDEF LOAD
FLM01LD4 FLM01LD4 ARCHDEF LOAD

TOTAL MEMBERS PROCESSED FOR TYPE = 2

==
* *
* CROSS REFERENCE FOR TYPE: ARCHDEF *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
------ --------------- ---- ------- -----------

FLM01ARH FLM01LD4 ARCHDEF COPY
FLM01LD3 ARCHDEF COPY

FLM01LD3 FLM01LD3 ARCHDEF PROM
FLM01SB2 ARCHDEF INCL

FLM01LD4 FLM01LD4 ARCHDEF PROM
FLM01SB2 ARCHDEF INCL

FLM01SB2 FLM01SB2 ARCHDEF PROM

TOTAL MEMBERS PROCESSED FOR TYPE = 7

Figure 77. Architecture report with cutoff of NONE (Part 3 of 3)

Architecture Report Utility

196 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

**
**
** **
** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **
** **
** ARCHITECTURE REPORT **
** **
** 93/12/25 00:02:30 **
** **
** **
** **
** PROJECT: PROJ1 **
** GROUP: DEV1 **
** TYPE: ARCHDEF **
** MEMBER: FLM01SB2 **
** CUTOFF: LINK EDIT CONTROL **
** **
** **
**
**

==
* *
* ARCHITECTURE REPORT *
* *
* H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E = ERROR *
* L = LINKEDIT CONTROL G = GENERIC I = INCLUDED D = DEFAULT *
* *
==

CODE: H MEMBER: FLM01SB2

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+---

H FLM01SB2 ARCHDEF
L FLM01LD4 ARCHDEF
L FLM01LD3 ARCHDEF

NUMBER OF HIGH LEVEL MEMBERS PROCESSED = 1
NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED = 2
NUMBER OF ERROR MEMBERS FOUND = 0

==
* *
* CROSS REFERENCE FOR TYPE: SOURCE *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
------ --------------- ---- ------- -----------

FLM01MD3 FLM01LD3 ARCHDEF INCLD
FLM01MD4 FLM01LD4 ARCHDEF INCLD
FLM01MD5 FLM01LD4 ARCHDEF INCLD

FLM01LD3 ARCHDEF INCLD
FLM01MD6 FLM01LD4 ARCHDEF INCLD

FLM01LD3 ARCHDEF INCLD

TOTAL MEMBERS PROCESSED FOR TYPE = 6

Figure 78. Architecture report with cutoff of LEC (Part 1 of 2)

Architecture Report Utility

Chapter 8. Using SCLM Functions 197

Export Utility

The export utility writes accounting and cross-reference data to stand-alone and
portable accounting and cross-reference databases that contain only those records
associated with a specified group. The export utility does not change any data
currently residing in the specified group. The output from the export utility is used
as input to the import utility.

With the export utility, you can capture SCLM accounting information associated
with a specified group. Use the export utility when you want to create a consistent
set of data to archive or transport. You can specify that the exported accounting
information be purged from an existing export VSAM data set.

==
* *
* CROSS REFERENCE FOR TYPE: LMAP *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
------ --------------- ---- ------- -----------

FLM01LD3 FLM01LD3 ARCHDEF LMAP
FLM01LD4 FLM01LD4 ARCHDEF LMAP

TOTAL MEMBERS PROCESSED FOR TYPE = 2

==
* *
* CROSS REFERENCE FOR TYPE: LOAD *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
------ --------------- ---- ------- -----------

FLM01LD3 FLM01LD3 ARCHDEF LOAD
FLM01LD4 FLM01LD4 ARCHDEF LOAD

TOTAL MEMBERS PROCESSED FOR TYPE = 2

==
* *
* CROSS REFERENCE FOR TYPE: ARCHDEF *
* *
==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET
------ --------------- ---- ------- -----------

FLM01ARH FLM01LD4 ARCHDEF COPY
FLM01LD3 ARCHDEF COPY

FLM01LD3 FLM01LD3 ARCHDEF PROM
FLM01SB2 ARCHDEF INCL

FLM01LD4 FLM01LD4 ARCHDEF PROM
FLM01SB2 ARCHDEF INCL

FLM01SB2 FLM01SB2 ARCHDEF PROM

TOTAL MEMBERS PROCESSED FOR TYPE = 7

Figure 78. Architecture report with cutoff of LEC (Part 2 of 2)

Export Utility

198 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Export only works on accounting information. Data in project partitioned data sets
is not exported.

Before using the export utility, verify that the project manager has completed all
the steps required to perform the export setup task. Specifically, export data sets
must be defined and allocated for the group in the project from which the data is
exported.

Figure 79 shows the panel that appears when you select Option 6, Export, from the
Utilities panel.

To export an SCLM group, enter information for each field. The fields for the
Export Utility - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The group from which you are exporting data.

Replace export data Specify whether to replace the export accounting and cross-reference
data in the export data sets with data from this export. If you do
not select this field and the export data sets contain data, the data is
not replaced, the export is not performed, and an error message is
issued.

Export does not purge data from the project hierarchy primary
accounting and cross-reference data sets.

Output control Specify the destination for messages and reports when they are
executed (Ex) or submitted (Sub) by entering the corresponding
destination number.

Menu SCLM Utilities Jobcard Help
--

SCLM Export Utility - Entry Panel

Selection criteria:
Project . : PROJ1 Alternate - INT
Group . . . USERID

Enter "/" to select option
/ Replace export data

Output control:
Ex Sub Process . . 1 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer

3. Dataset Printer . . _
4. None Volume . . ______

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 79. SCLM Export Utility (FLMDXE#P)

Export Utility

Chapter 8. Using SCLM Functions 199

Process You can call the processing part of the export utility from the
interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information that is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see “Batch Processing” on page 232.

Printer Specify the printer output class

Volume Specify the volume on which SCLM should save data sets

Export Report Example

Figure 80 on page 201 shows a sample export report.

The report contains a header indicating that it is an Export Report, which project
definition and group are being exported, and the data set names of the VSAM files
that contain the exported information. The header is followed by three sections:
accounting records, build map records, and intermediate records. The report
always contains a section for each type even if no records of that type were
processed.

The Verify Status field contains the value PASSED unless one of the following is
true:
v The authorization code change field is non-blank for the record
v The accounting type is INITIAL
v The record could not be read

The Completion Status field contains the value PASSED if the record was
exported; otherwise, it contains the value FAILED, which means there was some
error writing the record to the export database. Completion Status should always
contain the value NOT ATTEMPTED if the Verify Status field contains the value
FAILED, because SCLM does not attempt to export a record if the record did not
pass verification.

If the export cross-reference data set is defined for the project definition, the
cross-reference records are also exported; but the export report does not include
them. If the export cross-reference data set is not defined for the project definition,
but the group being exported contains cross-reference records, the Verify Status is
set to FAILED and the Completion Status is set to NOT ATTEMPTED. No
intermediate records are processed.

Export Utility

200 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

**
**
**
**
** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)
**
** EXPORT REPORT
**
** 90/10/18 10:58:27
**
** PROJECT: PROJ1
** ALTERNATE: PROJ1
** GROUP: USER
**
**
** EXPORT ACCOUNTING FILE: PROJ1.EXPORT.ACCOUNT.DATABASE
** EXPORT CROSSREF FILE: PROJ1.EXPORT.CROSSREF.DATABASE
**
**

ACCOUNTING RECORDS: PAGE: 1
VERIFY COMPLETION

TYPE MEMBER STATUS STATUS
-------- -------- ------ -------------
MVS1ADA A PASSED PASSED
MVS1ADA ADABL1 PASSED PASSED
MVS1ADA ADABL2 PASSED PASSED
MVS1ADA ADABL3 PASSED PASSED
MVS1ADA ADABL4 PASSED PASSED
MVS1ADA ADAMAIN PASSED PASSED
MVS1ADA ADASPEC PASSED PASSED
MVS1ADA ASPEC PASSED PASSED
MVS1ADA B PASSED PASSED
MVS1ADA BPRIME PASSED PASSED
MVS1ADA BSPEC1 PASSED PASSED
MVS1ADA BSPEC2 PASSED PASSED
MVS1ADA BSPEC3 PASSED PASSED
MVS1ADA BSPEC4 PASSED PASSED
MVS1ADA BSPEC5 PASSED PASSED
MVS1ADA BSPEC6 PASSED PASSED
MVS1ADA B1 PASSED PASSED
MVS1ADA B2 PASSED PASSED
MVS1ADA C PASSED PASSED
MVS1ADA CSPEC PASSED PASSED
MVS1ADA D PASSED PASSED
MVS1ADA DSPEC PASSED PASSED
MVS1ADA ESPEC PASSED PASSED
MVS1ADA LONGCU PASSED PASSED
MVS1ADA MAINBIND PASSED PASSED
MVS1ADA MH1 PASSED PASSED
MVS1ADA XSPEC FAILED NOT ATTEMPTED

Figure 80. Export Report (Part 1 of 3)

Export Utility

Chapter 8. Using SCLM Functions 201

Import Utility

The import utility reintroduces the exported SCLM accounting information into the
current project after verifying that this data corresponds to the current contents of
the SCLM-controlled data sets.

Before using the import utility, verify that the project manager has completed all
the steps required to perform the import setup task. Specifically, a copy of the
project database from which the items were exported must exist. This means that
the PDS members must have been copied. Export VSAM data sets must be defined
and allocated for the group in the project into which the data will be imported.

Like the SCLM editor, the import utility verifies authorization codes and prohibits
simultaneous updates of members. The group specified to receive the import must

BUILD MAP RECORDS: PAGE: 2
VERIFY COMPLETION

TYPE MEMBER STATUS STATUS
-------- -------- ------ -------------
MVS1ADA ADAMAIN PASSED PASSED
MVS1ADA ADASPEC PASSED PASSED
MVS1ADA ASPEC PASSED PASSED
MVS1ADA BSPEC1 PASSED PASSED
MVS1ADA BSPEC2 PASSED PASSED
MVS1ADA BSPEC3 PASSED PASSED
MVS1ADA BSPEC4 PASSED PASSED
MVS1ADA BSPEC5 PASSED PASSED
MVS1ADA BSPEC6 PASSED PASSED
MVS1ADA CSPEC PASSED PASSED
MVS1ADA DSPEC PASSED PASSED
MVS1ADA ESPEC PASSED PASSED

INTERMEDIATE RECORDS: PAGE: 3
VERIFY COMPLETION

CU QUAL CU NAME CU TYPE STATUS STATUS
------- ---------------------------- ------- ------ -------------
MVSADA ADAMAIN BODY PASSED PASSED
MVSADA ADAMAIN SPEC PASSED PASSED
MVSADA ADAMAIN XREF PASSED PASSED
MVSADA ADASPEC SPEC PASSED PASSED
MVSADA ASPEC SPEC PASSED PASSED
MVSADA BSPEC1 SPEC PASSED PASSED
MVSADA BSPEC2 SPEC PASSED PASSED
MVSADA BSPEC3 SPEC PASSED PASSED
MVSADA BSPEC4 SPEC PASSED PASSED
MVSADA BSPEC5 SPEC PASSED PASSED
MVSADA BSPEC6 SPEC PASSED PASSED
MVSADA CSPEC SPEC PASSED PASSED
MVSADA DSPEC SPEC PASSED PASSED
MVSADA ESPEC SPEC PASSED PASSED
MVSADA ESPEC_IS_LONGER_THAN_EIGHTY_ SPEC PASSED PASSED

CHARACTERS_TO_TEST_THE_REPOR
T_WRITER_FOR

Figure 80. Export Report (Part 2 of 3)

Figure 80. Export Report (Part 3 of 3)

Export Utility

202 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

be a development group. The import utility also ensures that all the software
components to be imported are available and have accounting information. Finally,
the import utility verifies that each software component is either new or directly
based on the version that exists in the higher group.

The export database is purged after the import is successfully completed.

Figure 81 shows the panel that appears when you select Option 7, Import, from the
Utilities panel:

To import an SCLM group, enter information in each field. The fields for the
Import Utility - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The development group into which the import is to occur. This
group can be any development group defined in the project
definition.

Authorization code The authorization code to be used for all the suitable members to be
imported. This field defaults to the authorization code of each
member at the time the member is exported. If the authorization
code assigned to a member is not in the group being accessed,
SCLM does not process the member. Authorization codes cannot
contain commas.

Change code Optionally specify a change code to be added to the change code
list of each imported member. Change codes cannot contain
commas. If you do not specify a change code, SCLM uses the
change code at the time the member is exported.

Menu SCLM Utilities Jobcard Help
--

SCLM Import Utility - Entry Panel

Selection criteria:
Project . : PROJ1 Alternate - INT
Group . . . USERID

Member information:
Authorization code . . ________ Mode . . . 1 1. Conditional
Change code ________ 2. Unconditional

3. Report

Output control:
Ex Sub Process . . 2 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer

3. Dataset Printer . . _
4. None Volume . . ______

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 81. SCLM Import Utility (FLMDXI#P)

Import Utility

Chapter 8. Using SCLM Functions 203

Mode Select one of the following:

Conditional
To stop the import process if there is a verification failure.

Unconditional
To bypass importation of only those elements that would
introduce problems with project integrity.

Report
To perform verification and report generation processing only.

Output control Specify the destination for messages and report when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4
for None.

Process You can call the processing part of the Import Utility from the
interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information which is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see “Batch Processing” on page 232.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Import Report Example

Figure 82 on page 205 is a sample import report.

The report contains a header indicating that it is an Import Report, which project
definition and group are being imported into, and the data set neams of the VSAM
files containing the information that is being imported. The header is followed by
three sections: accounting records, build map records, and intermediate records.
The report always contains a section for each type even if no records of that type
were processed.

The Verify Status field contains the value FAILED if any of the verification steps
failed for the member; otherwise, it contains the value PASSED.

The Completion Status field contains the value PASSED if the record was actually
imported; it contains the value FAILED if the import was attempted for a member,
but failed; it contains the value NOT ATTEMPTED if the Verify Status field
contains the value FAILED because no import of a record is attempted if the record
did not pass verification. Certain verification steps will pass only for an
Unconditional import; these cases result in a Verify Status of WARNING and the
Completion Status for such a member depends on the mode of the import.

If an accounting record has cross-reference records and the accounting record
imports successfully, its cross-reference records are also imported. The import
report does not include cross-reference records.

Import Utility

204 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

**
**
** **
** **
** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **
** **
** IMPORT REPORT **
** **
** 90/10/23 06:12:47 **
** **
** PROJECT: PROJ1 **
** ALTERNATE: PROJ1 **
** GROUP: USER1 **
** AUTH CODE: **
** CHANGE CODE: **
** MODE: UNCONDITIONAL **
** **
** EXPORT ACCOUNTING FILE: PROJ1.USER.EXPORT.ACCOUNT **
** EXPORT CROSSREF FILE: PROJ1.USER.EXPORT.CROSSREF **
**

ACCOUNTING RECORDS: PAGE: 1
VERIFY COMPLETION

TYPE MEMBER STATUS STATUS
-------- -------- ------ -------------
ARCHDEF ADAASM PASSED PASSED
ARCHDEF ADALEC2 PASSED PASSED
ARCHDEF ADAPL1 PASSED PASSED
ARCHDEF ADAPSC PASSED PASSED
ARCHDEF ADASCR PASSED PASSED
ARCHDEF ALL PASSED PASSED
ARCHDEF ALLADA PASSED PASSED
ARCHDEF ALLBAD PASSED PASSED
ARCHDEF ASMTEXT PASSED PASSED
ARCHDEF B3CC1 PASSED PASSED
ARCHDEF CIRCULAR PASSED PASSED
ARCHDEF HADACC PASSED PASSED
ARCHDEF HADALEC PASSED PASSED
ARCHDEF HARDADA PASSED PASSED
ARCHDEF IVADACC PASSED PASSED
ARCHDEF IVADALEC PASSED PASSED
ARCHDEF NONADA PASSED PASSED
ARCHDEF PASCC PASSED PASSED
ARCHDEF PASCC1 PASSED PASSED
ARCHDEF PASCC2 PASSED PASSED
ARCHDEF PASCERR PASSED PASSED
ARCHDEF PAS1LEC PASSED PASSED
ARCHDEF PAS2LEC PASSED PASSED
ARCHDEF PAS3LEC PASSED PASSED
ARCHDEF PL1CC1 PASSED PASSED
ARCHDEF PL1CC2 PASSED PASSED
ARCHDEF PL1LEC PASSED PASSED
ARCHDEF PL1LEC2 PASSED PASSED
ARCHDEF P1 PASSED PASSED
ARCHDEF P2 PASSED PASSED
ARCHDEF P3 PASSED PASSED
ARCHDEF P4 PASSED PASSED

Figure 82. Import Report (Part 1 of 3)

Import Utility

Chapter 8. Using SCLM Functions 205

ARCHDEF SAMEHL PASSED PASSED
ARCHDEF SCRIPTHL PASSED PASSED
ARCHDEF SEGLIMIT PASSED PASSED
ARCHDEF SINCALOT PASSED PASSED
ARCHDEF TDSGL1 PASSED PASSED
ARCHDEF TDSGL2 WARNING PASSED
ARCHDEF TDSHL PASSED PASSED
LINKLIST ADAMAIN PASSED PASSED
LISTING ASM1 PASSED PASSED
LISTING ASM2 PASSED PASSED
LISTING SCRIPTHL PASSED PASSED
LMAP ADAMAIN PASSED PASSED
LMAP PASLIST1 PASSED PASSED
LOAD ADAMAIN PASSED PASSED
LOAD PASLIST1 PASSED PASSED
MVS1ADA A PASSED PASSED
MVS1ADA ADABL1 PASSED PASSED
MVS1ADA ADABL2 PASSED PASSED
MVS1ADA ADABL3 PASSED PASSED
MVS1ADA ADABL4 PASSED PASSED
MVS1ADA B PASSED PASSED
MVS1ADA BPRIME PASSED PASSED
MVS1ADA BSPEC6 PASSED PASSED
MVS1ADA B1 PASSED PASSED
MVS1ADA B2 PASSED PASSED
MVS1ADA C PASSED PASSED
MVS1ADA D PASSED PASSED
MVS1ADA LONGCU PASSED PASSED
MVS1ADA MH1 PASSED PASSED
MVS1LIST ADAMAIN FAILED NOT ATTEMPTED
MVS1LIST ASPEC FAILED NOT ATTEMPTED
MVS1LIST BSPEC6 PASSED PASSED
MVS2ADA BB PASSED PASSED
MVS2ADA MHBODY PASSED PASSED
MVS2ADA MHS1 PASSED PASSED
MVS2LIST ABODY PASSED PASSED
MVS2LIST ASUB1 PASSED PASSED
MVS2LIST ASUB2 PASSED PASSED

ACCOUNTING RECORDS: PAGE: 2
VERIFY COMPLETION

TYPE MEMBER STATUS STATUS
-------- -------- ------ -------------
MVS2LIST ASUB3 PASSED PASSED
OBJ ADAMAIN PASSED PASSED
OBJ ASM1 PASSED PASSED
OBJ ASM2 PASSED PASSED
OBJ PASCOBJ PASSED PASSED
SOURCE ASM1 PASSED PASSED
SOURCE ASM2 PASSED PASSED
SOURCE COBOL PASSED PASSED
SOURCE COMPA PASSED PASSED
SOURCE COMPB PASSED PASSED
SOURCE COMPC PASSED PASSED
SOURCE FIBCOP PASSED PASSED
SOURCE FIBO PASSED PASSED
SOURCE FORTRAN PASSED PASSED
SOURCE MSG1 PASSED PASSED
SOURCE MSG2 PASSED PASSED
SOURCE PANEL1 PASSED PASSED
SOURCE PANEL2 PASSED PASSED
SOURCE PASCPGM PASSED PASSED

Figure 82. Import Report (Part 2 of 3)

Import Utility

206 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Audit and Version Utility

The audit and version utility allows you to audit SCLM operations on SCLM
controlled members and create versions of editable members. Using the audit and
version utility, you can view the audit information for a member, retrieve a version
to a sequential data set not controlled by SCLM, to a partitioned data set not
controlled by SCLM, or to a SCLM controlled development group. This utility also
enables you to delete audit and version information from the database.

SOURCE PL1INCL1 PASSED PASSED
SOURCE PL1INCL2 PASSED PASSED
SOURCE PL1INCL3 PASSED PASSED
SOURCE PL1MAIN FAILED NOT ATTEMPTED
SOURCE PL2MAIN PASSED PASSED
SOURCE PL3MAIN PASSED PASSED
SOURCE SCRIPTHL PASSED PASSED
SOURCE SCRIPT1 PASSED PASSED
SOURCE SCRIPT1A PASSED PASSED
SOURCE SCRIPT1B PASSED PASSED
SOURCE SCRIPT2 PASSED PASSED
SOURCE SCRIPT2A PASSED PASSED

BUILD MAP RECORDS: PAGE: 3
VERIFY COMPLETION

TYPE MEMBER STATUS STATUS
-------- -------- ------ -------------
ARCHDEF ADACC PASSED PASSED
ARCHDEF ADALEC PASSED PASSED
ARCHDEF ASMTEXT PASSED PASSED
ARCHDEF PASCC PASSED PASSED
ARCHDEF PAS1LEC PASSED PASSED
ARCHDEF SCRIPTHL PASSED PASSED
MVS1ADA ADAMAIN PASSED PASSED
MVS1ADA ASPEC PASSED PASSED
MVS1ADA BSPEC6 PASSED PASSED
MVS2ADA ABODY PASSED PASSED
MVS2ADA ASUB1 PASSED PASSED
MVS2ADA ASUB2 PASSED PASSED
MVS2ADA ASUB3 PASSED PASSED
SOURCE ASM1 PASSED PASSED
SOURCE ASM2 PASSED PASSED
SOURCE SCRIPTHL PASSED PASSED

INTERMEDIATE RECORDS: PAGE: 4
VERIFY COMPLETION

CU QUAL CU NAME CU TYPE STATUS STATUS
------- ---------------------------- ------- ------ -------------
MVSADA ADAMAIN BODY PASSED PASSED
MVSADA ADAMAIN SPEC PASSED PASSED
MVSADA ADAMAIN XREF PASSED PASSED
MVSADA ASPEC BODY PASSED PASSED
MVSADA ASPEC SPEC PASSED PASSED
MVSADA ASPEC.ASUB1 BODY PASSED PASSED
MVSADA ASPEC.ASUB2 BODY PASSED PASSED
MVSADA ASPEC.ASUB3 BODY PASSED PASSED
MVSADA BSPEC6 SPEC PASSED PASSED

Figure 82. Import Report (Part 3 of 3)

Import Utility

Chapter 8. Using SCLM Functions 207

The project manager controls the audit and version capabilities through the use of
macros within the project definition. Audit information is stored in a VSAM data
set, and versions of the SCLM members are stored in one or more partitioned data
sets allocated for this use.

Note: The data kept in audit VSAM data sets and the versioning partitioned data
sets is for the exclusive use of the audit and version utility. Do not edit or
alter these data sets without using the audit and version utility or the data
may be lost.

Figure 83 shows the panel that appears when you select Option 8, Audit and
Version, from the SCLM Utilities Panel.

The fields on the SCLM Audit and Version Utility - Entry Panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The group for which you want audit and versioning information.
The specified group must have an audit VSAM data set defined in
the project definition. It must also be defined on an FLMATVER
macro in the project definition.

Type The type of the member for which you want the version and audit
information displayed or retrieved. The type must be defined on an
FLMATVER macro in the project definition. A wildcard or ’*’ is not
permitted in this field. This is a required field.

Member The member for which you are requesting information. If you leave
this field and the Command field blank, SCLM displays the SCLM
Version Selection panel. The Member field is optional.

Figure 83. SCLM Audit and Version Utility (FLMVUS#P)

Audit and Version Utility

208 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Date from The starting date of the range of dates to search for the specified
member. The date must be in the form YY/MM/DD. If you specify
a member and leave this field blank, SCLM searches from the
beginning of the file to the TO date. If you specify a member and
leave the Date from and Date to fields blank, all versions of the
member appear.

SCLM verifies that the date you enter is valid and not greater than
today’s date. The Date from field is optional.

Date to The ending date of the range of dates to search for the specified
member. The date must be in the form YY/MM/DD. If you specify
a member and leave this field blank, SCLM uses the current date as
the end date for the search. If you leave the Date from and Date to
fields blank, all versions of the member appear.

SCLM verifies that the date you enter is valid and greater than or
equal to the Date from value. If you specify a future date, this field
defaults to the current date. The Date to field is optional.

Data set name The name of the sequential or partitioned data set in which the
retrieved version of the member is to be stored. If you want to
retrieve a member, you must define and catalog the data set. If you
specify a data set that has not been defined and cataloged, SCLM
rejects your request to retrieve a member and returns an error. This
field takes precedence over the To Group and To Type fields.

The DCB attributes RECFM and LRECL must match those of the
data set from which this version was originally created. If they do
not match, the results of any attempted retrieval will be
unpredictable. SCLM cannot verify compatibility because the
original data set need not exist for the version to be retrieved.

In addition, SCLM requests exclusive access of the retrieval data set
by userid or profile prefix. For this reason, SCLM does not check
whether the data set is in use by the same user before performing a
retrieve.

To Group The SCLM development group that you want to retrieve the
versioned member to. The group must be a development group that
is defined in the project definition.

To Type The type of the member that you want to retrieve the versioned
member into. The type must be defined in the project definition. A
wildcard or asterisk (*) is not permitted in this field.

Authorization Code A valid authorization code for the retrieve group that you want to
associate with the member.

SCLM Version Selection

You can retrieve a version of a member, view the accounting information for that
version of the member, or delete that version and its associated accounting
information by entering selections on the SCLM Version Selection panel. To display
the SCLM Version Selection panel, do the following on the SCLM Audit and
Version Utility Entry panel:
1. Leave the Command field blank or enter V in the Command field.
2. Enter the group and type information in the appropriate fields.
3. Press Enter.

Use the SCROLL commands or the LOCATE command to scroll the list.

Audit and Version Utility

Chapter 8. Using SCLM Functions 209

To restrict the member list displayed, you can enter values in any or all of the
following fields:
v Member (enter full member name or leave blank)
v Date From (enter valid date)
v Date To (enter valid date)

Figure 84 shows the SCLM - Version Selection panel appearing when you follow
the preceding steps:

The fields for the Version Selection panel shown in Figure 84 are:

Member The names of the members matching the selection criteria on the
SCLM Audit and Version Utility - Entry panel that have audit and
version information.

Group The name of the group you specified on the SCLM Audit and
Version Utility - Entry panel.

Action Reason The action that was performed against the specified member. Valid
values include:

v BUILD
v BLDDEL
v DELETE
v EXT LIB
v FREE
v IMPORT
v LOCK
v PROMOTE
v STORE
v UNLOCK
v UPTATHCD (update authorization code)
v UPTCHGCD (update change code)
v UPTUENTY (update user entry)

Menu SCLM Utilities Help
--

SCLM - Version Selection

Project . : PROJ1 Alternate - INT
Type . . . : SOURCE
Data Set . : USERID.RETRIEVE.VERSION

Line Commands: A Audit Information D Delete R Retrieve

Action Action Action Action
S Member Group Reason Date Time Userid Result Ver Status
- -------- -------- -------- -------- -------- -------- -------- --- --------

TEXT1 USERID STORE 91/03/24 10:39:07 USERID COMPLETE * _________
TEXT2 USERID LOCK 91/03/24 10:39:06 USERID COMPLETE _________

********************************Bottom of data *******************************

Option ===> ___ Scroll ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 84. SCLM Version Selection Panel (FLMVSL#P)

Audit and Version Utility

210 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Action Date The date the action listed in the Action Reason field occurred.

Action Time The time the action listed in the Action Reason field occurred.

Userid The user ID of the person who performed the action.

Action Result The result of the action performed on the member.

ATTEMPT
The action is in progress or was not completed (ABEND,
for example).

COMPLETE
The action completed successfully.

FAILED
The version action failed. You can get a message ID from
the audit record display that can be used to determine the
cause for failure. You must look at the Audit Record
Display Panel to know which field to reference.

Ver Indicates (using an asterisk) whether a version of the member
exists.

Status Indicates the status of the line command. Possible values are:
v *SELECT
v *DELETED
v *FAILED
v *ERROR

To the left of each member listed is a space for entering a line command to do the
following:

A Display the audit information for the member.

When you enter the A line command beside a member name, the Audit /
Version Record panel appears, as shown in Figure 85 on page 212, giving you
the information recorded for that member.

D Delete the audit record in the VSAM audit data set and delete the versioned
member in the partitioned data set.

When you enter the D line command beside a member name, SCLM deletes
the audit record and the corresponding versioned member, if one exists. A
message appears, indicating that the operation completed successfully.

R Retrieve the member and store it in the data set you specified on the SCLM
Audit and Version Utility - Entry panel.

When you enter the R line command beside a member, SCLM retrieves the
member. When you retrieve more than one member into a sequential data set,
each member after the first is copied over the previous member. To retrieve
more than one member to a sequential data set, copy the first member to
another data set before retrieving a second member. We recommend that you
use a partitioned data set if you intend to copy more than one member.

SCLM will not allow you to retrieve a second version of the same member but
you may retrieve a version of a different member. To retrieve a second version
of the same member you must first return to the SCLM Audit and Version
Utility Entry panel and then come back to the SCLM Version Selection panel.

Audit and Version Utility

Chapter 8. Using SCLM Functions 211

Note: When you retrieve a member into either an SCLM-controlled or
non-SCLM-controlled partitioned data set, SCLM does not issue a
warning if another member with the same name is already in the data
set.

You can enter multiple commands on the panel as long as the commands do not
conflict. All requests are handled in succession unless an error occurs. If an error
occurs, the selection list indicating the error reappears. You must correct the error
before further processing can occur.

SCLM Audit and Version Record

If you enter ’A’ to display the SCLM Audit and Version record, the Audit /
Version panel shown in Figure 85 appears.

The fields for the panel shown in Figure 85 are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The group for which the accounting information appears.

Type The type for which the accounting information appears.

Member The member for which the accounting information appears.

Audit Date The date the audit was performed.

Audit Time The time the audit was performed.

Userid The userid of the person who caused the audit record to be created.

SCLM Change Date The date the member was last edited.

SCLM Change Time The time the member was last edited.

SCLM - Audit/Version Record

Project . : PROJ1 Alternate - INT
Audit data:

Group : USER Calling service . . : STORE
Type : SOURCE Action Taken . . . : PUT
Member : TEXT1 Action Result . . . : COMPLETE
Audit Date : 91/03/24 Fail Message . . . :
Audit Time : 10:39:07
Userid : USERID
SCLM Change Date . : 91/03/24
SCLM Change Time . : 10:39:07

Version data:
Data Set : PROJ1.JOB1.VERSION
Member : TEXT1
Change Date . . . : 91/03/24
Change Time . . . : 10:39:07

Enter "/" to select option
_ Display Accounting Information

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 85. SCLM Audit / Version Record (FLMVBA#P)

Audit and Version Utility

212 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Data Set The name of the PDS where the version data, if any, for this record
is stored. This name is always present, whether or not version data
exists.

Member The name of the member in which version data is stored, if this
record has version data. This field is blank if there is no version
data.

Change Date The date the versioned member was written.

Change Time The time the versioned member was written.

Calling Service The service that SCLM is running at the time; for example, BUILD,
PROMOTE, STORE, LOCK, or DELETE.

Action Taken The function that causes the audit / version to be taken.

For example, EDIT causes a SAVE. EDIT is the calling service and
SAVE is the action taken. The action could be LOCK, DELETE,
MIGRATE, and so on. The calling service and the action taken could
be the same. For example, the BUILD service could cause the
BUILD action to take a version.

Action Result Indicates the status of the action taken.

Fail Message Indicates a failure. This field contains the message number of the
failing message.

If the action result is COMPLETED, you can display the related accounting
information. Enter S to select this option located at the bottom of the SCLM Audit
/ Version Record panel. See Figure 52 on page 162 for an example of the
Accounting Record panel.

Delete Group Utility

The Delete Group utility lets you delete database components associated with a
specified group. You can delete a member or members and all associated SCLM
accounting information, including accounting records, build map records,
cross-reference records, and intermediate records. You can further specify whether
you want everything deleted, only build outputs, only accounting information and
build map records, or only build map records. You may also specify that nothing
actually be deleted but a deletion report be generated.

The delete group utility does not delete members that have no accounting
information.

Figure 86 on page 214 shows the panel that is displayed when you select Option 9,
Delete Group, from the Utilities panel.

Audit and Version Utility

Chapter 8. Using SCLM Functions 213

To delete information from an SCLM group, you must enter information for each
field. The fields for the Delete Group Utility - Entry panel are:

Project The project specified on the SCLM Main Menu. This field is display
only. An Alternate field also appears if you specified an alternate
project definition.

Group The group for which information is to be deleted. Delete Group
only works on groups defined to the project. This field is required.
There are no default values.

Type The type from which information is to be deleted. You can use
patterns for the type you want processed. See “Specifying Selection
Criteria” on page 182 for details. Delete Group only works on types
defined to the project.

Member The name or pattern of the members and SCLM information to be
deleted. Only members that have accounting information are
deleted. You can use patterns for the member name. See “Specifying
Selection Criteria” on page 182 for details.

Menu SCLM Utilities Jobcard Help

SCLM Delete Group Utility - Entry Panel

Delete Group Input:
Project . : PROJ1 Alternate - INT
Group . . . USERID
Type SOURCE (Pattern may be used)
Member . . . * (Pattern may be used)

Delete Flag . . 3 1. Build map Delete Mode . . 2 1. Execute
2. Account 2. Report
3. Text
4. Output

Output control:
Ex Sub Process 1 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer
Listings . . 3 3 3. Dataset Printer _

4. None Volume ______

Command ===> __
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 86. SCLM Delete Group Utility (FLMDDG#P)

Delete Group Utility

214 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Delete Flag The indicator of the type of data to be deleted.

Build map
All build map records that match the pattern are deleted.

Account
All accounting records, cross-reference records,
intermediate records, and build map records that match the
pattern are deleted. The accounting type will not be
checked.

Text All accounting records, cross-reference records,
intermediate records, build map records, intermediate code,
and text members that match the pattern are deleted. The
accounting type will not be checked.

Output All build map records, intermediate records and code, and
all non-editable accounting records, their cross-reference
records and associated text members that match the pattern
are deleted. Editable accounting records, their
cross-reference records or associated text members are not
deleted.

Delete Mode The indicator for the action performed by the delete group. Select
one of the following:

Execute
All members that match the selection criteria for the
specified Delete Flag are deleted.

Report No deletion will occur; contents of what would, upon
execution, be deleted for the specified selection criteria and
Delete Flag are reported. Report is always be the default
whenever this panel appears. Even after you execute a
delete group, the mode is changed to Report.

To delete members, update authority to the hierarchy data sets
containing the members is required, even if the Delete Group utility
is run in REPORT mode.

Output control Specify the destination for messages and the report when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal 2 for Printer, 3 for Dataset, or 4
for None. A listing data set will not be allocated when the Delete
Mode is Report, even though Dataset is specified for the Listings
field.

Process You can call the processing part of the delete group utility from the
interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information which is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see “Batch Processing” on page 232.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Delete Group Report Example

Figure 87 on page 217 shows a sample Delete Group report.

Delete Group Utility

Chapter 8. Using SCLM Functions 215

The report contains a header indicating that it is a Delete Report, which project
definition and group are specified, the type and member selection criteria, and the
delete flag and mode. The header is followed by three sections: members, build
maps, and Ada intermediate code. The report always contains all of these sections
even if there is no activity to report for a section. Output members are denoted by
an asterisk (*) at the beginning of the report line.

The VERIFY STATUS field contains the value PASSED unless the delete routine
was unable to verify the record for one of the following reasons:

v User has no update authority
v Member has non-blank access key
v Error reading the record

The COMPLETION STATUS field contains the value PASSED if the member was
actually deleted. The field contains NOT ATTEMPTED if the verification failed or
the delete group was run in REPORT MODE only. The field contains FAILED if an
error occurred during the execution of the deletion. The field contains WARNING
if the text member or intermediate code did not exist. The accounting record is still
deleted.

Although cross-reference records are deleted, there is no section explicitly for them
in the delete group report. If the accounting record is successfully deleted, its
cross-reference records, if any, are also deleted.

The report contains a header indicating that it is a Delete Group report. The header
also shows which project definition and group are specified, the type and member
selection criteria, and the delete flag and mode.

Delete Group Utility

216 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Build (Option 4)

The build processor automatically compiles, links, or deletes output to make build
outputs match build inputs. The build function:
v Ensures total project integrity by verifying that all components defined to the

architecture being built are present and complete
v Performs necessary translations such as compiles and links
v Conditionally saves translator output in the database
v Generates a build report

**
**
** **
** **
** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **
** **
** DELETE GROUP REPORT **
** **
** 91/03/26 13:30:39 **
** **
** PROJECT: PROJ1 **
** ALTERNATE: PROJ1 **
** GROUP: USER1 **
** TYPE: * **
** MEMBER: * **
** FLAG: TEXT **
** MODE: REPORT **
**
**

MEMBERS: PAGE 1
VERIFY COMPLETION

GROUP TYPE MEMBER STATUS STATUS
-------- ------ ------- ------ ----------
USER1 SOURCE ASM1 PASSED NOT ATTEMPTED
USER1 SOURCE ASM2 PASSED NOT ATTEMPTED
USER1 SOURCE PASMAIN PASSED NOT ATTEMPTED

*USER1 LISTING PASMAIN PASSED NOT ATTEMPTED
*USER1 LMAP PASMAIN PASSED NOT ATTEMPTED
*USER1 LOAD PASMAIN PASSED NOT ATTEMPTED
*USER1 OBJ PASMAIN PASSED NOT ATTEMPTED
USER1 SOURCE PASCPGM PASSED NOT ATTEMPTED
USER1 SOURCE PSCINCL1 PASSED NOT ATTEMPTED
USER1 SOURCE PSCINCL2 PASSED NOT ATTEMPTED
USER1 SOURCE PSCINCL3 PASSED NOT ATTEMPTED
USER1 SOURCE SCRIPTHL PASSED NOT ATTEMPTED
USER1 SOURCE SCRIPT1 PASSED NOT ATTEMPTED

BUILD MAPS: PAGE: 2
VERIFY COMPLETION

GROUP TYPE MEMBER STATUS STATUS
-------- ------ ------- ------ ----------
USER1 SOURCE PASCMAIN PASSED NOT ATTEMPTED

ADA INTERMEDIATE CODE: PAGE: 3
VERIFY COMPLETION

GROUP CU QUAL CU NAME CU TYPE STATUS STATUS
-------- -------- ------------- ------- ------ -----------
********************* NO RECORDS PROCESSED *********************

Figure 87. Delete Group Report

Build (Option 4)

Chapter 8. Using SCLM Functions 217

Build compiles, links, and integrates software components according to the
architecture. For any group in the hierarchy, the build function uses the software
components within the hierarchy of that group to update the out-of-date members.
Use build to compile and link individual components as well as to integrate the
smaller components into larger components.

For each component that it processes, the build function takes one of the following
actions:
v Does nothing if the component has not changed since the previous build
v Deletes out-of-date outputs if that will leave the component in an up-to-date

state
v Compiles or links changed components.

At the completion of the build, SCLM, when requested, produces a report
identifying the members that were generated or deleted by the build function.

You also can specify that a Build Report be generated without actually invoking
any translators. The Build Report identifies those components in the hierarchy that
would change if translators were to be invoked.

Before build begins processing the member, it tries to open the VSAM accounting
and cross-reference data sets for the group where the build is taking place. If you
do not have UPDATE authority to the data sets or if there is an error opening one
of the data sets, the build will fail. See ISPF Software Configuration and Library
Manager (SCLM) Reference for more information on the processing done by the
build processor.

The panel shown in Figure 88 appears when you select Option 4, Build, from the
SCLM Main Menu.

Figure 88. SCLM Build (FLMB#P)

Build (Option 4)

218 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The fields for the SCLM Build - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An Alternate
field also appears if you specified an alternate project.

Group The group in which the build is to occur.

Type The type of the member to build.

Member The name of the member to build.

Scope You must specify a scope equal to or greater than the scope specified
with the SCOPE keyword in the FLMLANGL macro.

Limited
To process those components that the architecture members directly
reference. If you use a source member, the build function processes
only that member.

Normal
To process the components and members referenced by the specified
architecture member. In addition, this scope processes upward
dependencies for all Ada-type source members referenced directly
by the architecture member and all source members referenced as
upward dependencies.

Subunit
To process the components and members processed in normal scope
as well as downward dependencies for all Ada-type source
members referenced directly by the architecture members.

Extended
To process the components and members processed in normal scope
as well as downward dependencies for all source members within
the normal scope and the source to all outputs referenced. In
addition, extended scope processes any outputs referenced via LINK
architecture definition statements or parsed includes. Extended
scope also includes anything that Promote verifies that is related to
the member built. For example if the architecture definition
statement LINK is used to reference a load module, the architecture
definition that created the referenced load module is included in the
extended scope. Because SCLM uses information from the most
recent build map to determine what should be included in extended
scope, extended scope may include members that are no longer
relevant to the architecture. If you receive error messages about
members that are no longer relevant to the architecture definition,
try building in normal scope before using extended scope.

Build (Option 4)

Chapter 8. Using SCLM Functions 219

Mode
Conditional

To check for unacceptable translator return codes (for example,
compiler or linker return codes). Processing stops immediately if
build detects any translation errors.

SCLM saves build maps and translator output only for translations
that complete successfully. However, the translator listings (if
desired) for all components processed, and the build report, are
saved and reflect the final results of the build.

Unconditional
To continue processing of all members despite translation errors of
other members.

Use this mode when you need to update complete applications or
large subapplications. You can also use this mode initially to detect
translation errors in several components.

As with the conditional mode, BUILD will stop when verification
errors occur and not continue on to execute the BUILD translators.
After a successful verification of the members, SCLM will pass
control to the BUILD translators, regardless of the return code value
from each translator. This will provide information as to the extent
of any errors that may have been introduced by changing the
members. A conditional BUILD would stop after the first translator
return code that exceeds the GOODRC value for the related
FLMTRNSL macro.

Build does not attempt a translation unless all of its dependencies
that were in scope were completed successfully. For example, a
linkedit is not attempted if the compilation of a source member
failed.

Forced
To force all requested components to be translated again regardless
of the previous status of the modules.

Report
To generate a complete build report without performing an actual
build. The report reflects the potential results of an unconditional
build.

Output control Specify the destination for messages, report, and listings when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4 for
None.

When executing a build in the foreground, the build listing is browsed if
a translation error occurs; otherwise, the build report is browsed. The
translator is responsible for providing the build listing.
Note: If no output is specified for Report, no build user exit information
is produced. That is because SCLM provides the build user exit with
information from the build report.

The data sets that are created are not deleted. Specifying a volume that
already contains a report, message or listing data set could result in JCL
errors when the job is submitted.

Build (Option 4)

220 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Error listings only The build service allows you to generate a temporary listings file. If you
do not select Error listings only, all translator listings are copied to the
temporary listings file. If you select it, only those members receiving a
translator error are copied to the temporary listings file. An empty file
indicates that no errors occurred. The file is temporary in the sense that
the contents are not under SCLM control and may be purged by the
user.

Workstation Build Specify whether or not the build will invoke any workstation translators.
For a foreground build which invokes a workstation translator, SCLM
will verify that an ISPF workstation connection exists before executing
the build. For a batch build which invokes a workstation translator,
SCLM will verify that the information required to initiate an ISPF
workstation connection has been set by a previous build or the
workstation build pull-down. If not, SCLM will prompt the user to enter
this information before the build job is submitted. If the build does not
invoke a workstation translator, do not specify this field.

Process You can call the processing part of the build utility from the interactive
or batch environment by selecting Execute or Submit, respectively. If you
request batch processing by selecting Submit, you must specify the job
statement information that is used in the JCL generated for batch
processing.

For information on using a unique jobname on the jobcard in batch
processing, see “Batch Processing” on page 232.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Build Report Example

The build report provides a synopsis of the build. It includes:
v The date and time of the build
v The mode used
v The name of the component that was requested to be built
v The last change date and time of the component
v The project definition used
v The software components that were successfully translated
v The build maps that required regeneration
v The out-of-date software components that caused the regeneration
v The software components and build maps that were deleted from the build

group.

This report provides a synopsis of the Build. The title page identifies the date and
time of the build, as well as the scope and mode used. It also lists the member you
specified on the Build panel and the project definition specified on the SCLM Main
Menu.

The report lists the components that were built and saved in the database; that is,
those components that passed the compilation or linkage edit phase. It also shows
the build maps that required (re)generation, along with a list of software
components that build used to determine that (re)generation of the build map was
necessary. After the section for items generated, the report contains a section for
items deleted. It lists the build outputs that were deleted from the build group.
Finally, it lists the build maps that were deleted.

Note: Intermediate information is in the report if it is valid and useful. The
following example is an Ada build report, so the sections on Intermediate

Build (Option 4)

Chapter 8. Using SCLM Functions 221

Code Generated and Intermediate Code Deleted have been included. These
two sections are omitted from the report for builds that do not affect
intermediate code.

If you enter REPORT in the Mode field, the report indicates what would be rebuilt
or deleted if you requested an unconditional build.

Build (Option 4)

222 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Figure 89 shows an example of a build report.

** **
** **
** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **
** **
** B U I L D R E P O R T **
** **
** 92/11/18 08:41:19 **
** **
** PROJECT: SCLM69 **
** GROUP: USER **
** TYPE: MVS2ADA **
** MEMBER: GSPEC **
** ALTERNATE: SCLM69 **
** SCOPE: NORMAL **
** MODE: CONDITIONAL **
** **
** **

******* B U I L D O U T P U T S G E N E R A T E D ******* Page 1

MEMBER TYPE VERSION KEYWORD
------ ---- ------- -------
FLM01MD3 OBJ 6 OBJ
FLM01MD5 OBJ 6
FLM01MD6 OBJ 6
FLM01MD3 LIST 6 LIST
FLM01MD5 LIST 6
FLM01MD6 LIST 6
FLM01LD3 LOAD 6 LOAD
FLM01LD3 LMAP 6 LMAP

**** I N T E R M E D I A T E C O D E G E N E R A T E D **** Page 2

COMPILATION UNIT NAME CU-TYPE CU-QUAL VERSION
--- ------- ------- -------
FLM01ADS SPEC MVSADA 2
FLM01ADS BODY MVSADA 2

******* B U I L D M A P S G E N E R A T E D ******* Page 3

(REASON FOR REBUILD)
MEMBER TYPE VERSION MEMBER TYPE
------ ---- ------- ------- ----
FLM01LD3 ARCHDEF 3 FLM01MD3 SOURCE
FLM01MD3 SOURCE 6 FLM01MD3 SOURCE

FLM01MD5 SOURCE
FLM01MD6 SOURCE

FLM01MD5 SOURCE 5 FLM01MD5 SOURCE
FLM01MD6 SOURCE 4 FLM01MD6 SOURCE

Figure 89. Build Report (Part 1 of 2)

Build (Option 4)

Chapter 8. Using SCLM Functions 223

Promote (Option 5)

The promote function copies members from any group to the next higher group.

The promote function:
v Determines which components are eligible for promotion
v Verifies that the application is complete and current
v Promotes the components that are at the current group and within the scope of

the promote
v Potentially purges the components from the current group (and possibly lower

key groups)
v Generates a promote report

Promote gives you an easy and efficient method to move data through a hierarchy.
As you build software components, they become eligible for promotion to the next
group in the hierarchy. Promote is based on architecture or source members; thus
you must build software components successfully before you can promote them to
the next group. Using architecture members, you can promote individual software
components or sets of software components during one promote. SCLM processes
all data types associated with a component as a unit.

When the promote is complete, the promote function generates a report identifying
the components promoted.

******* B U I L D O U T P U T S D E L E T E D ******* Page 4

MEMBER TYPE VERSION KEYWORD
------ ---- ------- -------
FLM2M01 OBJ 4 OBJ
FLM2M02 OBJ 4
FLM2M03 OBJ 4
FLM2M01 LIST 4 LIST
FLM2M02 LIST 4
FLM2M03 LIST 4
FLM2LD LOAD 5 LOAD
FLM2LD LMAP 5 LMAP

**** I N T E R M E D I A T E C O D E D E L E T E D **** Page 5

COMPILATION UNIT NAME CU-TYPE CU-QUAL VERSION
--- ------- ------- -------
FLM02BWS SPEC MVSADA 2
FLM02BWS BODY MVSADA 2
FLM02BWS.SUBUNIT1 BODY MVSADA 4

******* B U I L D M A P S D E L E T E D ******* Page 6

(REASON FOR DELETE)
MEMBER TYPE VERSION MEMBER TYPE
------ ---- ------- ------- ----
FLM02LD ARCHDEF 6 FLM02LD LOAD

FLM02LD LMAP
FLM02MD1 SOURCE 6 FLM02MD1 OBJ

FLM02MD1 LIST
FLM02MD2 SOURCE 6 FLM02MD2 OBJ

FLM02MD2 LIST
FLM02MD3 SOURCE 6 FLM02MD3 OBJ

Figure 89. Build Report (Part 2 of 2)

Promote (Option 5)

224 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

You also can specify that only a Promote Report be generated. The Promote Report
identifies those components in the hierarchy that would be copied or moved if the
promote function were to be invoked.

The panel shown in Figure 90 appears when you select Option 5, Promote, from
the SCLM Main Menu.

The fields on the SCLM Promote - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project.

From group The group from which to promote the member

Type The type of the member

Member The name of the member to be promoted

Menu SCLM Utilities Jobcard Help
--

SCLM Promote - Entry Panel

Promote input:
Project . . . : PROJ1 Alternate - INT
From group . . USERID
Type ARCHDEF
Member SAMPLE

Mode . . 1 1. Conditional Scope . . . 3 1. Normal
2. Unconditional 2. Subunit
3. Report 3. Extended

Output control:
Ex Sub Process . . 2 1. Execute

Messages . . 3 2 1. Terminal 2. Submit
Report . . . 3 2 2. Printer

3. Dataset Printer . . H
4. None Volume . . ______

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 90. SCLM Promote (FLMP#P)

Promote (Option 5)

Chapter 8. Using SCLM Functions 225

Scope Select one of the following:

Normal
To process the components and members directly referenced by
the specified architecture member. In addition, this scope
processes upward dependencies for all Ada-type source
members referenced directly by the architecture member and all
source members referenced as upward dependencies.

Subunit
To process the components and members processed in normal
scope as well as downward dependencies for all Ada-type
source members referenced directly by the architecture
members.

Extended
To process the components and members processed in normal
scope as well as downward dependencies for all source
members within the normal scope.

Note: You must specify a scope equal to or greater than the scope
specified with the SCOPE keyword in the FLMLANGL macro.

Mode Select one of the following:

Conditional
To bypass the copy and purge steps if promote discovers a
verification error.

Promote compares dates in the build maps against dates in the
database for all software components taking part in the
promote. Software components are not promoted if they are
deemed out of date. Use this mode to guarantee complete
project integrity.

Unconditional
To perform copy and purge processing of all members despite
verification errors of other members and to promote only those
members with correct build map information.

Use this mode to promote software components for incomplete
or partial applications. For example, if some software
components referenced by an architecture member are not
complete but are required in the next group of the hierarchy,
you can use this mode to promote those software components.

The use of the unconditional mode does not guarantee
application integrity, and you should use it with caution. It is,
however, an effective method of promoting dependent software
components that you plan to integrate at a later date. The
Unconditional mode field is not retained on the Promote panel.
If Unconditional is used, the panel is changed to Conditional
when the promote returns to the panel.

Report
To perform verification and report generation processing. The
report contains a list of members eligible for promotion.

Output control Specify the destination for messages and the report when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4
for None.

Promote (Option 5)

226 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Process You can call the processing part of the Promote - Entry Utility from
the interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information which is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see “Batch Processing” on page 232.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Promote Report

Figure 91 on page 228 shows an example of the promote report.

The promote report provides an accurate account of the promote. It lists all
members promoted to the next group and all members purged from lower groups.
It also marks “out-of-scope” software components with an asterisk (*).

Note: An out-of-scope software component is an architecture that is referenced with
a LINK or CREF statement but not with an INCL statement. It is not within
the domain of the architecture specified.

The report displays specific information according to the promote modes and
scopes you select.
v For a promote of a member from a non-key group to a key group, the report

indicates that the member was:
– Copied to the next group
– Purged from the “from” group
– Purged from the last key group.

v For a promote of a member in a key group to a non-key group, it indicates that
a copy was made.

v For a promote of a member in a key group to a key group, it indicates that a
copy was made and a purge was performed on the source key group.

v For a second promote that follows a failed promote, it indicates the work
completed by that promote only.

For more information on key and non-key groups, see “Key/Non-Key Groups” on
page 141.

If a verification error occurs for a member, the report displays the message number
that identifies the error in the Message field.

Promote (Option 5)

Chapter 8. Using SCLM Functions 227

Figure 91. Promote Report (Part 1 of 7)

Figure 91. Promote Report (Part 2 of 7)

Figure 91. Promote Report (Part 3 of 7)

Promote (Option 5)

228 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Figure 91. Promote Report (Part 4 of 7)

Figure 91. Promote Report (Part 5 of 7)

Promote (Option 5)

Chapter 8. Using SCLM Functions 229

Processing Errors

The Promote function can recover from most SCLM environment errors. However,
data set overflow and data contention, as described as follows, can occur during a
promote.

Figure 91. Promote Report (Part 6 of 7)

Figure 91. Promote Report (Part 7 of 7)

Promote (Option 5)

230 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Data Set Overflow

Partitioned data sets tend to become full and require compression. When a target
data set runs out of space during a promote, promote attempts to recover and
continue the promote. Although you get system ABEND messages, the promote
ignores the ABEND and continues. However, processing bypasses making a copy
to this data set and it also bypasses the subsequent purge step for members that
were not copied.

If data set overflow occurs, follow these steps:
1. Compress or reallocate the data set with larger space allocations.
2. Increase the directory block allocation, if necessary.
3. Promote again.

The second promote copies only the members that did not copy in the original
promote. If successful, the purge step is normal. The resulting promote report
identifies only the copied and purged members in the second promote.

Data Contention

Be careful when you process certain combinations of SCLM builds and promotes
simultaneously. You should not promote or build members that have not
completed processing for another promote. Compiler errors or promote verification
errors in one or more of the concurrent jobs can occur. You can normally recover
from most errors by running the failed function again.

Command (Option 6)

To use the SCLM command shell, select Command (option 6) from the SCLM Main
Menu. The panel shown in Figure 92 appears.

SCLM Command Shell

===> ___

Instructions:

Enter TSO or SCLM commands above.

F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Figure 92. SCLM Command Shell (FLMHETSO)

Promote (Option 5)

Chapter 8. Using SCLM Functions 231

Use this panel to execute TSO, CLIST, REXX execs, or SCLM commands from
within SCLM.

Batch Processing

The Verify Batch Job Information panel shown in Figure 93 is the standard panel
for the SCLM functions that allow you to select batch processing. When you enter
SUBMIT and when the JOB statement is not on the submittal panel, this panel
appears. SCLM requires JCL job statements when you process in batch mode.

Note: SCLM can automatically generate unique jobnames. If you use the jobname
USERIDx, where x is a letter of the alphabet or a digit, SCLM increments
this letter or number by one for the next job. For example, if your USERID
is SMITH, and your jobcard is submitted with the jobname SMITH3, the
jobname is updated to SMITH4.

Output Disposition

The Output Disposition panel shown in Figure 94 on page 233 is the standard end
panel for many SCLM functions when you have sent output to a data set. It allows
you to determine the disposition of the report or messages data set previously
displayed. You can choose between keeping the data set, deleting the data set,
printing and keeping the data set, or printing and deleting the data set.

Menu SCLM Utilities Jobcard Help
Batch Job Information

SCLM Batch Job Information

Enter/verify JOB statement information below:

===> //V$USERID$ JOB (ACCOUNT,BIN,BLDG,DEPT,FLAG,N)’’TSOUSERNAME’._______
===> // MSGCLASS=A,CLASS=A,NOTIFY=USERID.________________________________
===> // USER=,GROUP=????????,PASSWORD=????????___________________________
===> //*___

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Output control:
Ex Sub Process... 2 1. Execute

Messages... 3 3 1. Terminal 2. Submit
Report..... 3 2 2. Printer
Listings... 3 3 3. Dataset Printer . . . *

4. None Volume . . . ______

Command ===>
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 93. Verify Batch Job Information (FLMDSU#P)

Command (Option 6)

232 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

When you send output to a data set, the database contents, architecture, build, and
promote functions display a report data set if they complete with an acceptable
return code. The migration utility displays a message data set because its report is
a set of messages.

If you allocate the output to a data set and 99 data sets have already been
allocated, SCLM either overlays a new data set over an old one or concatenates a
new data set with an old one. To avoid this problem, delete old data sets to allow
allocation of new data sets.

If error conditions occur in any of these functions (except build translator errors)
and SCLM routes messages to a data set, SCLM displays the message data set, not
the report data set. In either case, the Output Disposition panel appears after you
finish browsing the displayed data set.

The view, edit, library, sublibrary management, and audit and version utility
functions do not create report or message data sets and, consequently, do not
display the Output Disposition panel.

Sample Project Utility (Option 7)

The SCLM Sample Project Utility makes it easier to create a sample SCLM project
to use in learning the functions of SCLM, or as the basis for building a project for
production use. In addition, you can use the Sample Project Utility to delete a
project that was built using the utility.

The SCLM Sample Project Create function, Option 10.7.1, creates the data sets
required for a simple SCLM project (including the VSAM accounting data base). It
also creates a data set listing information about the project.

Menu SCLM Utilities Jobcard Help
--

Output Disposition

K Keep data set (without printing) PK Print and keep data set
D Delete data set (without printing) PD Print and delete data set

Enter END command to keep data set without printing.

Data Set Name USERID.BUILD.REPORT19

General purpose print/punch SYSOUT class information:
Print A
Punch

Job statement information:
===> //JOBNAME JOB (ACCOUNT,BIN,BLDG,DEPT,FLAG,N),’NAME’,CLASS=C,MSGCLASS=H.
===> // USER=USERID,PASSWORD=XXXX
===> //* GROUP=PROJ1,NOTIFY=PROJ1DIR

===> //*
Command ===> ___

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

Figure 94. Output Disposition (FLMDEXT)

Output Disposition

Chapter 8. Using SCLM Functions 233

You must provide the names of several existing data sets on your system (such as,
the ISPF macros data set), and the location of the High Level Assembler on your
system. You have a choice of including a PLI sample if you have the PLI
Optimizing Compiler installed on your system.

You do not need knowledge of assembler or link editing. The utility customizes,
assembles, and link edits the project definition for you. The architecture definitions
are then imported from the ISPF sample library and the sample application is built
and promoted to the top level of the hierarchy. The project is then ready to use for
the Development Scenario described in “Chapter 9. Development Scenario” on
page 235. Use this scenario to learn the capabilities of SCLM.

The SCLM Sample Project Delete function, Option 10.7.2, deletes a project that was
created with the Create utility. This function uses the information data set created
by the Create utility to identify the data sets to delete.

Sample Project Utility (Option 7)

234 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 9. Development Scenario

This chapter uses a sample application to describe the basic tasks you typically
perform using SCLM. The sample data sets referred to in the example are shipped
with the ISPF product.

“Chapter 1. Defining the Project Environment” on page 3 provides step-by-step
instructions for the project manager to define the sample project for this scenario.
You can also define the sample project using Option 10.7, the SCLM Sample Project
utility. No knowledge of SCLM is required to use the utility. You can use this
hierarchy to gain some basic experience using SCLM. After examining some of the
project data sets and performing some SCLM operations, you will have a better
understanding of how SCLM can help you in your project activities.

This chapter walks you through the functions from the SCLM Main Menu. For a
complete description of the SCLM Main Menu options, see “Chapter 8. Using
SCLM Functions” on page 143.

Understanding the Hierarchy and the SCLM Main Menu

This section provides an overview of the sample hierarchy and briefly describes
the functions available from the SCLM Main Menu.

The sample project uses a three-layer hierarchy composed of four groups. Figure 95
is used to represent the SCLM hierarchy in this sample.

Throughout the remainder of this chapter, this sample project is called PROJ1. If
the name established by your project manager is different, or you used a different
name to define the project using the SCLM Sample Project utility (Option 10.7), use
that name instead.

The sample application is composed of six programs that are used to build an
application called FLM01AP1, as shown in Figure 96 on page 236. The programs
are linked into four load modules. The four load modules are organized as two
subapplications, which in turn are components of FLM01AP1.

Note: If the PLI Optimizing Compiler is not included as a language in the sample
project, the application consists of five programs linked into three load
modules.

Figure 95. Sample Project Hierarchy

© Copyright IBM Corp. 1990, 1999 235

The sample that follows assumes that the SCLM project setup activities have been
completed as described in the ISPF Software Configuration and Library Manager
(SCLM) Developer’s and Project Manager’s Guide or that you have defined the sample
project using the SCLM Sample Project utility (Option 10.7).

After the sample project has been defined, you can take the following steps to
begin using SCLM.
1. Log on to MVS.
2. Start ISPF to display the ISPF Primary Option Menu.
3. Select SCLM and press Enter. The SCLM Main Menu is displayed.

Note: Source module FLM01MD2 and architecture member FLM01LD2 are
included only if PLI Optimizing Compiler is included as a language if the
sample is defined using the SCLM Sample Project utility (Option 10.7).

Understanding the Architecture Definition

This section describes the architecture definition and its importance in an SCLM
project. The architecture definition describes to SCLM how the components of an
application fit together. For more information on architecture definitions, see
“Chapter 10. Architecture Definition” on page 249.

There are four types of architecture members:

HL (high level) HL architecture members reference application and
subapplication components.

Figure 96. Application FLM01AP1

236 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

CC (compilation control) CC architecture members contain the information
to produce and track software components with
object module output.

LEC (link edit control) LEC architecture members contain the information
to produce a complete load module.

Generic Generic architecture members identify the source
member or groups of source members to be
processed by a processor other than a standard
compiler. The sample project does not contain
examples of generic architecture members.

If you have several architecture definition statements that are used together in
many places, you can put them into a member and reference the member using the
COPY statement wherever you need the statements. When you use the COPY
statement, the contents of the specified member are inserted directly into the
respective architecture members.
1. Select View from the SCLM Main Menu. Specify PROJ1 in the Project field and

specify DEV2 in the Group field. Press Enter.
2. Specify ARCHDEF in the Type field and leave the Member field blank. Press

Enter. The architecture members are shown in the following table.

Member Type Comments

FLM01AP1 HL References FLM01SB1 and FLM01SB2 with the INCL statement. A
build performed on FLM01AP1 results in a complete build for all
the code in the project, if necessary.

FLM01SB1 HL References FLM01LD1 and FLM01LD2 with the INCL statement. A
build performed on FLM01SB1 results in a complete build of the
FLM01SB1 subapplication, if necessary. If the PLI Optimizing
Compiler is not included as a language in the sample project,
FLM01SB1 references only FLM01LD1.

FLM01SB2 HL References FLM01LD3 and FLM01LD4 with the INCL statement. A
build performed on FLM01SB2 results in a complete build of the
FLM01SB2 subapplication, if necessary.

FLM01LD1 LEC Directs SCLM to produce the load module and load map for
FLM01LD1. The INCL statement references architecture member
FLM01CMD. The PARM statements pass parameters to the SCLM
BUILD translators.

FLM01LD2 LEC Directs SCLM to build load module FLM01LD2 from the source
FLM01MD2. The INCLD architecture statement is used to identify
FLM01MD2 as the source. Note that LOAD, LMAP, and SOURCE
are types identified by the FLMTYPE macro in the project
definition. If the PLI Optimizing Compiler is not included as a
language in the sample project, FLM01LD2 is not inlcuded.

FLM01CMD CC Directs SCLM to produce object code from FLM01MD1. SINC
identifies FLM01MD1 as the source member. Note that in addition
to object code (OBJ), there is also source listing (SOURCLST). OBJ
and SOURCLST are identified in the project definition with the
FLMTYPE macro.

FLM01LD3 LEC References FLM01MD3 with the INCLD statement. Other modules
are referenced with the copy of FLM01ARH. In this example,
FLM01ARH references FLM01MD5 and FLM01MD6. FLM01LD3
indirectly references FLM01MD5 and FLM01MD6 via the COPY
statement in FLM01ARH.

Chapter 9. Development Scenario 237

Member Type Comments

FLM01LD4 LEC References FLM01MD4 with the INCLD statement. Other modules
are referenced with the copy of FLM01ARH. In this example,
FLM01ARH references FLM01MD5 and FLM01MD6. FLM01LD4
indirectly references FLM01MD5 and FLM01MD6 via the COPY
statement in FLM01ARH.

FLM01ARH CC References modules FLM01MD5 and FLM01MD6 with the INCLD
statement. The LEC architecture members FLM01LD3 and
FLM01LD4 use the COPY directive to copy the contents of
FLM01ARH into their members for a build.

To create an architecture report:
1. Select Architecture Report (option 3.5) from the SCLM Main Menu, and press

Enter.
2. Type:

ARCHDEF in the Type field
FLM01AP1 in the Member field
6 in the Report cutoff field
1 in the Process field
1 in the Messages field
1 in the Report field

Press Enter.

The output shows the hierarchy, the kinds of architecture members (HL, CC, and
LEC), and various cross-references. See “Architecture Report Example” on page 193
for an example of the architecture report.

Sample SCLM Development Cycle

Your typical daily operations using SCLM might flow like this: edit (SCLM editor),
compile (Build), and test, repeating this cycle until testing is complete, and then
promote. After the promote is performed, you or other developers can use the
SCLM editor to automatically draw members down to a development group for
modification.

The following list includes steps that you might perform in the development cycle
of a software component or any type of data that is under SCLM control. Figure 97
on page 240 illustrates the project flow of the following steps. The hierarchy used

for this example is shown in Figure 95 on page 235.
1. The developer draws down a source member from group RELEASE to group

DEV1 and modifies it. The data at group RELEASE is the current release of the
project. Changes are now being made for the next release. When the developer
has made the modifications to the member, SCLM parses the member and
registers it with SCLM. The successful registering of the update makes this
member available for use by other SCLM functions.

2. The Build function is initiated against an architecture definition that includes
this parsed and stored source member. This build creates object modules
reflecting the changes that were made to the source member. The source,
architecture definition, and object module members used here have been given

238 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

the same member names. Thus, you can easily see how these members are
related, although their types are different. These naming conventions, however,
are not required by SCLM.
If the Build function does not complete successfully because of errors in the
modified members, you must use the SCLM editor again to correct the errors,
and try to build again.

3. The developer can now test the effect the changes have made to the
application.

4. The developer then moves all the changed data to the group TEST by invoking
PROMOTE using the same architecture definition that was previously built.
The data changes are now available to all developers because they have
reached a common group. If any changes in data made by the developer
conflict with changes other developers are making in their development
groups, these changes are found when the other developers build their changes
at their development group.
Alternately, the person appointed as SCLM project manager can do the
promote. The SCLM project manager is the person who has UPDATE authority
to TEST and promote changes to this group. The SCLM project manager can
guarantee all changes promoted to the group TEST have been unit tested
(because the project manager can control the promotes).

5. When all changes scheduled for the next release have been promoted to the
group TEST, testing the application can occur at this group while other
programmers are still developing software in the development groups.

6. Finally, after system testing is complete in the TEST group, the new release of
the project can be promoted to the RELEASE group.

Chapter 9. Development Scenario 239

Using the SCLM Editor

This section describes how to alter code using the SCLM editor. To illustrate how
SCLM protects project members from unintentional updates, you will change the
FLM01EQU member and create an error situation. This error causes the BUILD to
fail and prevents a PROMOTE until you correct the error.

FLM01EQU is an included member in FLM01MD3. SCLM automatically tracks
included members, so you do not have to specify their relationship in your
architecture definition.

1. Return to the SCLM Main Menu, and specify DEV2 in the Group field. Select
the Edit option and press Enter.

Figure 97. Development Cycle

240 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

2. Select SOURCE in the Type field and FIX01 in the Change code field. Press
Enter to bring up the Edit Member list.

3. Select FLM01EQU from the Edit Member list. Note that FLM01EQU is in the
RELEASE group and a draw down from the RELEASE group to the DEV2
group takes place.

4. From the command line, issue the SETUNDO ON command. Different system
installations will have different profile defaults set, so issuing this command
will ensure that you have PDF Edit UNDO set On.

5. Duplicate the line R4 EQU 4 and change WORK REGISTER in the comment to DEV2
ERROR. Press Enter.

6. From the command line, issue UNDO: type Undo on the command line and
press Enter. The change to the comment is removed. The duplicate line
remains. Note that UNDO works only if your profile has UNDO set to ON.

7. Reenter the change to create the error situation for this example from 4.
8. Use the split screen option. Select SCLM from the ISPF Primary Option Menu.

Select Edit, specify PROJ1 in the Project field, and specify DEV1 (DEV1 is
another development group in this SCLM project) in the Group field.
Attempt to edit FLM01EQU by typing FLM01EQU in the Member field and
pressing Enter. Press the Help key twice to retrieve the long message
describing the error condition. SCLM locked FLM01EQU for DEV2 at the time
of the draw down. FLM01EQU cannot be updated by another group until a
PROMOTE is issued from DEV2 or FLM01EQU (member and accounting
record) is deleted from DEV2. End split screen.

9. Return to the DEV2 edit screen and issue the SPROF edit command: type
SPROF on the command line and press Enter. Note that the language is ASM
and the change code is FIX01. SCLM prompts you for a language when a
member is created. You can use SPROF to change the language SCLM
associates with the member. Press Enter to return from the SCLM Edit Profile
Panel to the SCLM Edit panel.

10. Press the End key to save the member and end the edit session. Use the Help
key to display the long message, which indicates that SCLM parsed and
stored the member.
Press the End key twice to return to the SCLM Main Menu.

Understanding the Library Utility

This section describes the library utility functions typically used by developers.
You can use the library utility to browse and delete components and the
accounting information that is generated with edit/save, build, and promote
activities.
1. Select Utilities from the SCLM Main Menu, and press Enter.
2. Select Library, and press Enter.
3. To browse the accounting record for PROJ1.DEV2.SOURCE(FLM01EQU), type:

A on the command line
DEV2 in the Group field
SOURCE in the Type field
FLM01EQU in the Member field

Press Enter.

Chapter 9. Development Scenario 241

Notice the date and time of the last update (Change date and Change time
fields) for FLM01EQU.

4. To display the statistics, select the Display statistics field and press Enter.
5. Return to the accounting record by pressing the End key once. Note that the

FLM01EQU has one change code. To display the change code, select the
Number of change codes field and press Enter. The change code FIX01 appears
along with the Change date and Change time.

6. Return to the Library Utility panel by pressing the End key twice.
7. To browse the member PROJ1.RELEASE.SOURCE(FLM01MD3), type:

B on the command line
RELEASE in the Group field
FLM01MD3 in the Member field

Press Enter.

Notice that FLM01MD3 contains a COPY statement for FLM01EQU.
8. Press the End key until you are back at the SCLM Main Menu.

Using Build

This section illustrates how to use the SCLM build processor when one of the
members has an error. The SCLM build processor translates all members and all
modules that have been affected by alterations. A build operation prepares the
member for a promote operation.
1. Select the Build option from the SCLM Main Menu, and press Enter.
2. Execute a Build operation by typing:

DEV2 in the Group field
ARCHDEF in the Type field
FLM01AP1 in the Member field
/ in the Error listings only field
1 in the Mode field.
2 in the Scope field
1 in the Messages field
1 in the Report field
3 in the Listings field

Press Enter.

Notice that you did not have to type EX on the command line or re-enter a
value in the Process field. You set this value when you created the Architecture
Report. The value is carried from panel to panel and is maintained as is until
you change it.

3. Note the return code of 8 from the assembler. There is also an error from the
translator for FLM01MD5, which contains FLM01EQU. The assembler listing is
contained in tso-prefix.BUILD.LISTnn.
Because of the assembler error, SCLM Build will place you in Browse of the
LISTING data set (tso-prefix.BUILD.LISTnn). Note that the error is the duplicate
symbol R4.
If you are not using tso-prefix, your user ID will replace tso-prefix.

242 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

4. When you are finished browsing the LISTING data set, press the End key. The
Output Disposition panel appears. Type D to delete the LISTING data set, or
type K to keep the LISTING data set. After pressing Enter, the Build panel
appears.

Because the FLM01EQU member has changed and because FLM01MD5 contains
the FLM01EQU member, Build attempts to assemble and link FLM01MD5.
However, FLM01EQU contains the error you previously entered (a duplicate
symbol for R4) so nothing is assembled or linked.

Editing the Member to Correct Errors

This section describes how to re-edit the FLM01EQU member to correct the error
you introduced previously.
1. Select Edit from the SCLM Main Menu, leave PROJ1 in the Project field and

DEV2 in the Group field. Press Enter.
2. Specify FLM01EQU to edit the FLM01EQU member in PROJ1.DEV2.SOURCE.
3. Remove the duplicate R4 equate line.
4. Save the changes by pressing the End key.

Attempting to Promote a Member before Performing a Build

This section describes how SCLM protects the integrity of your project hierarchy
by not allowing you to promote a member that has not been successfully built. The
promote operation copies changed members up into the next group in the library
structure.

The build operation you attempted previously was unsuccessful. Therefore, the
promote you attempt in this section will also be unsuccessful. SCLM maintains
synchronization between source and object by ensuring that only successfully built
members can be promoted. This safety feature addresses the common problem of
forgetting to recompile changed modules.
1. Select Promote from the SCLM Main Menu.
2. On the Promote panel, type:

DEV2 in the From group field
ARCHDEF in the Type field
FLM01AP1 in the Member field.
1 in the Mode field
1 in the Scope field
1 in the Messages field
1 in the Report field

Press Enter.

SCLM issues date and time mismatch error messages because the FLM01EQU
source has been updated and the modules that use it have not been recompiled by
the build operation. Promote sends a return code of 8 because the date and time
mismatch prevented it from copying anything to the next group.

Chapter 9. Development Scenario 243

Rebuilding the Changed Member

This section illustrates a successful build operation. Because all members are not
affected by the change to the FLM01EQU member, only the members containing
FLM01EQU are recompiled and linked. SCLM processes project components
efficiently by recompiling and relinking only those modules that were altered since
the last build operation.
1. Select Build from the SCLM Main Menu and press Enter.
2. On the Build panel, type:

DEV2 in the Group field
ARCHDEF in the Type field,
FLM01AP1 in the Member field
1 in the Mode field
2 in the Scope field
1 in the Messages field
1 in the Report field
3 in the Listings field

Press Enter.

Note the traversal of the architecture. FLM01MD2 was not affected by the
change to the FLM01EQU member and will not be recompiled. FLM01LD2,
which contains only FLM01MD2, will not be relinked.

3. Verify that the build completed successfully (RETURN CODE = 0). If the return
code is not zero, check the listing, correct the errors, and try again.

Using the Database Contents Utility

This section illustrates use of the database contents utility to verify that the
compilations and links were performed.
1. Select the Utilities option from the SCLM Main Menu.

Select the Database Contents Utility option from the SCLM Utilities Menu.
2. On the Database Contents Utility panel, type:

DEV2 TEST RELEASE in the Group fields
SOURCE in the Type field
* in the Member field
/ in the Change additional selection criteria field
1 in the Messages field
1 in the Report field
3 in the Tailored output field

Press Enter. The Additional Selection Criteria panel appears.
3. On the SCLM Database Contents - Additional Selection Criteria panel, type *

for the Authorization code, Change code, Change group, Change user id, and
Language fields. Do not select the First occurrence only field.
Type:

1 in the Data type field
3 in the Architecture control field
1 in the Scope field

These are the default values.

244 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Press Enter. The Customization Parameters panel appears.
4. On the Customization Parameters panel, select the Page headers and Show

totals fields, and enter Statistics Report for the Report name field. Type
@@FLMMBR @@FLMLAN @@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS @@FLMNCS
for the Report line format field after the prompt.
Put at least 2 spaces between each @@FLMxxx variable. This can wrap to the
next line; this field accepts up to 160 characters. These are the default values.
Press Enter to execute the database contents utility report.
Note that only FLM01EQU is in the DEV2 group. The Database Contents
Utility panel reappears.

5. On the Database Contents Utility panel, type:

DEV2 TEST RELEASE in the Group fields
OBJ in the Type field

Do not select the Change additional selection criteria field.

Press Enter. Press Enter again on the Customization Parameters panel.

Note that FLM01MD2 does not appear in the DEV2 group. FLM01MD2 was not
affected by the changes to FLM01EQU.

6. On the Database Contents Utility panel, type:

DEV2 TEST RELEASE in the Group fields
LMAP in the Type field

Press Enter. Press Enter again on the Customization Parameters panel.

Note that FLM01LD2 does not appear in the DEV2 group. FLM01LD2 was not
affected by the changes to FLM01EQU.

7. On the Database Contents Utility panel, type:

DEV2 TEST RELEASE in the Group fields
LOAD in the Type field

press Enter. Press Enter again on the Customization Parameters panel.

Note that FLM01LD2 does not appear in the DEV2 group. FLM01MD2 was not
affected by the changes to FLM01EQU.

Promoting a Member Successfully

This section illustrates a successful promote operation. The FLM01EQU member is
moved from the DEV2 group to the TEST group.
1. Select the Promote option from the SCLM Main Menu, and press Enter.
2. On the Promote panel, type:

DEV2 in the From group field
ARCHDEF in the Type field
FLM01AP1 in the Member field
1 in the Mode field
1 in the Scope field
1 in the Messages field
1 in the Report field

Chapter 9. Development Scenario 245

Press Enter.
3. Verify that the promote completed successfully (RETURN CODE = 0). If the

return code is not zero, check the messages, correct the errors, and try again.
When the Promote panel reappears, press the End key to return to the SCLM
Main Menu.

4. Select the Utilities option from the SCLM Main Menu.
Select Database Contents Utility from the SCLM Utilities Menu. On the
Database Contents Utility panel, type:

DEV2 TEST
RELEASE

in the Group fields

* in the Type field
FLM01EQU in the Member field
1 in the Messages field
1 in the Report field
4 in the Tailored output field

Do not select the Change additional selection criteria field.

Press Enter. The Database Contents Utility panel reappears.
5. On the Database Contents Utility panel, type:

DEV2 TEST
RELEASE

in the Group field

SOURCE in the Type field
* in the Member field
/ in theChange additional selection criteria field
1 in the Messages field
1 in the Report field
4 in the Tailored output field

Press Enter. The Additional Selection Criteria panel is displayed.

Type FIX01 in the Change code field. Press Enter again. Only FLM01EQU
should be found, and it should only be found at TEST. The Database Contents
Utility panel reappears.

6. Return to the SCLM Main Menu by pressing the End key twice.

Drawing Down a Promoted Member

This section illustrates that a promoted member is available and can be edited by
other developers.
1. Specify Edit from the SCLM Main Menu, PROJ1 in the Project field, and DEV1 in

the Group field.
2. Edit the FLM01EQU member, by specifying SOURCE in the Type field and

FLM01EQU in the Member field. However, do not make any changes to the
member. Note that FLM01EQU is no longer locked by SCLM.

246 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Performing Project Housekeeping Activities

After you complete the development activities described in this chapter, be sure to
perform any cleanup or housekeeping activities in preparation for the next project
operations. You can clean up the sample project hierarchy by performing a
promote operation using group TEST, type ARCHDEF, and member FLM01AP1.
This restores the hierarchy to its original state so that others can use it to execute
this scenario. If you made other changes (such as a change to the FLM01EQU
member in the last activity), you might need to perform additional build and
promote operations.

You can also delete the tso-prefix.BUILD.LISTnn and tso-prefix.DBUTIL.CMDnn data
sets created during the preceding SCLM Build process.

Chapter 9. Development Scenario 247

248 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 10. Architecture Definition

An architecture definition describes the configuration of an application under
SCLM control and how it is to be constructed and integrated. Architecture
definitions are created and updated by the developers and describe the architecture
of an application. They provide specifications to the Build function for data
generation, and to the Promote function for the movement of data from one group
to another. Architecture definitions can reference other architecture definitions, thus
providing a simple building block tool for complex application definitions.
v Data Generation

Architecture definitions can specify the following information to the build
function:
– Where inputs to translators (for example, compilers) are to come from
– Where outputs from translators are to be stored
– What parameters are needed by a translator.

A single architecture definition can specify all the data generation to occur for a
large, complex application simply by referencing other architecture definitions.

v Data Movement
All data that is directly or indirectly referenced by an architecture definition is
promoted when that architecture definition is promoted. This encompasses
included architecture definitions, along with the system components they
describe. Thus, specifying a single high-level architecture definition for
promotion can cause an entire application to be promoted.

This chapter discusses the methods you can use to define the architecture, provides
several different examples of architecture members, and explains the use of
architecture member statements.

Architecture Members

Architecture members define the application at a high level by referencing lower
level architecture members. You can generate them top down or bottom up, using
an iterative approach. Create architecture members by using the edit function.

The capability to define an architecture allows you to control and track any
discrete division of an application from the most encompassing definition down to
the individual component. You can maintain the architecture members in a
separate type in the project data base. Use the architecture members to describe the
different versions or variations of a project or application.

Kinds of Architecture Members

SCLM provides four kinds of architecture members that you can use to generate an
architecture definition for an application. They are compilation control (CC),
linkedit control (LEC), high-level (HL), and generic.

Each kind of architecture member controls a different kind of component that
SCLM processes. Table 14 on page 250 categorizes the use of each kind of
architecture member.

© Copyright IBM Corp. 1990, 1999 249

Table 14. Uses of Architecture Members

Architecture Member Use

Compilation Control (CC) Define compiler processed components.

Linkedit Control (LEC) Define link edit processed components.

High-Level (HL) Define application and subapplication
components.

Generic Define specially processed components.

Each of these uses is described in the following pages. See “Sample Application
Using Architecture Definitions” on page 264 for an example of an application
consisting of architecture members.

Defining Compiler Processed Components

Standard compilers produce object modules as output. SCLM can be used to create
object modules by using either a Compilation Control (CC) architecture member or
a compilable source member as input to the build function. The following
discusses both methods for producing object modules.

Compilation Control Architecture Members

One method of creating object modules is through a Compilation Control (CC)
architecture definition.

CC architecture definitions contain all the information necessary to produce and
track software components with object module output. Use CC architecture
definitions to provide the following:
v The inputs to the compiler and other translators
v The outputs of the compiler and other translators
v Compiler options.

To directly identify an input to the compiler, use the SINC statement. If the input is
generated from another member in the project, use the INCL and INCLD
statements along with the KREF statement. The INCL and INCLD statements
identify members built before compiling this member. The KREF statement
identifies which outputs of the members on the INCL and INCLD statements are
inputs.

CC architecture members must have at least one SINC statement and one OBJ
statement. See “Architecture Statements” on page 256 for more information.

Members included by compiler include statements such as COPY are not identified
in architecture members. SCLM obtains the list of included members from a parser
that is run when a member is stored into SCLM and when members are updated.
The information about the parser, the compiler, and include libraries outside the
project is specified in a language definition. The language of a member must be
identified to SCLM when a member is added to an SCLM project. The language of
a member can be changed.

The ddnames used by the compiler are specified in the language definition by
FLMALLOC macros. The types of ddnames are identified by different IOTYPEs.
An IOTYPE of S identifies the input stream for the compiler. The input stream has

250 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

two formats. One, identified by KEYREF=SINC, is a sequential work file that
contains all of the inputs to the compiler concatenated together. The other,
identified by KEYREF=INCL, is a sequential work file that contains INCLUDE
statements for each of the input members. The format of the INCLUDE statement
is INCLUDE DDNAME(MEMBER). The DDNAME will be a ddname dynamically allocated
by SCLM. If multiple inputs are identified, they are concatenated in the order
specified in the architecture member.

You can add information to the input stream passed to the compiler by using the
CMD statement. The CMD statement can be used to add compiler directives, force
titles, or control listings based on the commands supported by the compiler in the
input stream.

You can append translator options to the options specified in the language
definition by using the PARM statement. Use the statement as many times as
necessary to specify all options you want (up to a string length of 512 characters).

You can pass parameters directly to specific build translators defined in the
language definition by using the PARMx statement, coupled with the use of the
PARMKWD parameter of the FLMTRNSL macro.

SCLM provides special statements for creating CC architecture members for
JOVIAL programs. Use the COMP statement to identify database targets for
generated JOVIAL compools. Use the statement the same way as the OBJ and LIST
statements.

SCLM orders compiles to ensure that outputs (such as JOVIAL compools, Ada
Intermediates, and DB2 DBRMs) are produced before compiling the member that
references them. SCLM orders compiles that are within the scope of the build. (See
“Build (Option 4)” on page 217 for more information.)

SCLM allows you to track and maintain all forms of generated data. Often, due to
space limitations, you do not want to save it all. SCLM gives you the option of
saving listings in the database or discarding them. Therefore, the architecture
member statement LIST is optional. SCLM can generate listings for viewing after a
build.

Specifying Source Members

Specifying a compilable source member to the build function is the alternate
method of creating object modules. The language definition of the source member
from the project definition determines which translators are called and where
outputs are saved during the build. Compiler parameters can only be overridden
by creating a CC architecture member.

Defining Link Edit Processed Components

Standard linkage editors produce load modules as output. To define software
components with load module outputs from standard linkage editors, use Linkedit
Control (LEC) architecture members. LEC architecture members contain all the
information necessary to produce a complete load module. Use the LEC
architecture member to identify the following:
v The load module name and the type in which you want it saved
v The linkage editor listing name and the type in which you want it saved
v All object and other load modules the load module is to contain

Chapter 10. Architecture Definition 251

v Linkedit control statements and linkage editor options.

LEC architecture members must have at least one LINK, INCL, INCLD, or SINC
statement and one LOAD statement.

Linkedit Control (LEC) architecture members can be constructed by referencing
any combination of source members, CC architecture members, generic architecture
members or LEC architecture members. Inputs to LEC architecture members are
identified in the same way that inputs to CC architecture members are identified.
The one difference is that by default LEC architecture members include object and
load modules generated by the OBJ and LOAD statements in the input stream to
the linkage editor. SINC statements can be used in LEC architecture members to
identify object modules or load modules which are generated outside of the
project. If SINC statements are being used to include load modules, the input
ddname for the build translator must specify KEYREF=INCL. One additional
statement can be used in LEC architecture members to identify an input to the
linkage editor. That statement is the LINK statement. It identifies an output in the
project that does not need to be rebuilt prior to being included in the input stream.

SCLM verifies that the inputs to the LEC architecture member are up-to-date prior
to link editing the inputs. SCLM will rebuild any inputs that are outputs of
building other members in the project when those outputs are out-of-date. The
inputs specified on LINK statements are an exception. These inputs will not be
rebuilt.

You can override default linkage editor options by using the PARM statement. Use
the statement as many times as necessary to specify all options you want. SCLM
uses the standard S/370 linkage editor as defined by the LE370 language definition
unless an LKED statement is used to override the default. See page 261 for more
information.

You can specify in the LEC that SCLM pass linkage edit control statements directly
to the linkage editor by using the CMD statement. Insert the control statements
along with the object and load modules by careful positioning in the LEC
architecture member.

The CMD statement can be used to include object modules and load modules that
are in data sets outside of the project. The language definition for the linkage
editor must include a ddname referencing the data set containing the members to
include.

Because of space limitations, you might not want online linkage editor listings.
SCLM allows you to save listings in the database or discard them. Therefore, the
architecture member statement LMAP is optional. Nonetheless, SCLM generates
listings to temporary listing data sets for your viewing during the build.

You cannot use the SETSSI linkage editor command in an LEC architecture
member. If SCLM finds a CMD SETSSI statement in an LEC architecture member
during a build, the build function overrides the statement with its own SETSSI
command.

SCLM Build and Control Timestamps

SCLM uses the Status System Index field to signify that the last update of a load
module was made through SCLM. The SSI field data that SCLM generates consists
of the following: the most significant bit is defined as a flag; the next most

252 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

significant 11 bits specify hour and minute in binary form; and the least significant
20 bits specify Julian date in packed decimal form. SCLM sets the flag bit and
writes these items into the SSI field during build processing when it generates a
load module.

Table 15. SCLM Status System Index Field Data

Bit Definition Form

0 flag bit

1-5 hour binary

6-11 minute binary

12-31 Julian date packed decimal

Defining Application and Subapplication Components

You can define applications and subapplications by using High-Level (HL)
architecture members. HL architecture members allow you to categorize groups of
related load modules, object modules, and other software.

You can maintain one HL architecture member to define an entire application for a
project. This HL architecture member references other architecture members that
eventually reference every component in the application. It can also reference the
source directly, with the language of the source defining the outputs to be
produced. By using this HL architecture definition as input to the build or Promote
functions you can ensure that the entire application is up to date or is promoted to
the next group in the project hierarchy. A build or promote of an HL architecture
member results in the building or promotion of every software component
referenced. In this way, you can guarantee the integrity of an entire application.

You can also use an HL architecture member to define subapplication software
components. Subapplications can be a combination of load modules or merely a
list of internal data items to be controlled. Subapplications can, in turn, reference
other subapplications to any depth. Conscientious use of HL architecture members
contributes to application modularity.

SCLM can control and track ISPF panels, skeletons, and messages that are not
processed by a compiler or linkage editor or used to invoke processors. Because
these unique forms of software are not processed by compilers, linkage editors, or
other processors, they are considered data dependencies and, therefore, can be
controlled by using the PROM statement.

In most cases, you do not want panel, skeleton, and message dependencies in LEC,
CC, and generic architecture members. Use HL architecture members to control all
dialog software. For example, you can use one HL architecture member for panels,
one for skeletons, one for messages, and one for the entire dialog that references
the three previous HL architecture members.

The PROM statement date_check parameter allows SCLM to bypass date checking
for the referenced member, thereby eliminating the need to build before promoting
when that member is modified. Careful use of the PROM statement in this manner
can eliminate unnecessary SCLM processing and improve efficiency.

Chapter 10. Architecture Definition 253

Generic Architecture Members

Generic architecture members are used to process members that do not generate
object modules. Examples of the outputs that might be produced are
documentation and panels. Generic architecture members are almost the same as
Compilation Control (CC) architecture members. The difference is that generic
architecture members cannot generate object modules using the OBJ statement. If
an OBJ statement is added to a Generic architecture member it becomes a CC
architecture member. Other output statements LIST, OUT1, etc. are used in generic
architecture members to identify the listings, documentation, panels or other
outputs produced.

Build and Promote by Change Code

You can also use architecture definitions to identify the parts associated with a
specific change or group of changes. This can be done in any architecture member
using the CCODE statement. In addition to the normal contents of an architecture
definition, such an architecture member contains a list of CCODE keywords
followed by a change code and include flag. An example of such an architecture
definition follows:

* ARCHDEF FOR PACKAGE PKG00001
CCODE POY66045 INCLUDE * Include changes for problem POY66045
CCODE POY66615 INCL * Include changes for problem POY66615
INCL SCLM ARCHDEF * SCLM ARCHDEF

There are no SCLM-enforced conventions for change codes. The only restriction is
that it be a maximum of 8 characters. For SCLM to determine the change code, any
change code that contains an embedded blank or whose first character is other
than A-Z, 0-9, @, # or $ must be enclosed in delimiters. A delimiter can be any
character not specified above. Following are some examples:

CCODE A * this includes change code A
CCODE ,A B C, E * this excludes change code A B C
CCODE /AB/ IN * this includes change code AB
CCODE 'A B' EX * this excludes change code A B
CCODE 1" EXCLUDE * this excludes change code 1"

Valid values for the include flag are INCLUDE or EXCLUDE. When not specified,
the default value is INCLUDE. A value of INCLUDE indicates that only the
changes specified are included. A value of EXCLUDE indicates that everything
except the specified changes are included. The following table illustrates the
conditions under which SCLM will build and promote by change code.

MEMBER CHANGE CODE CCODE CCODEX INCLUDE CCODE CCODEX
EXCLUDE

CCODEX Yes No
CCODEY No Yes
no change code No Yes

Multiple CCODE statements can be specified in an architecture definition. An error
message is issued when the include flag value is not the same on all statements.
Duplicate CCODE statements are ignored. Any CCODE statements whose change
code and include flag resolve to the same value are considered duplicates. For
example, the following CCODE statements are duplicates:

254 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

CCODE 1
CCODE '1 ' INCLUDE

CCODE and COPY keywords cannot be used in the same architecture definition.
Because the COPY keyword causes an actual copy of an architecture definition to
be inserted into the first, the architecture definition referenced by the COPY
statement must also be free of CCODE statements. To build an architecture
definition containing COPY statements by change code, create a new architecture
definition that contains the CCODE statement and an include (INCL) of the
original architecture definition.

The concept of a package (group of changes) is supported through the ability to
specify multiple CCODE keywords in an architecture definition. To more easily
identify and maintain these architecture definitions, you can define a TYPE called
PACKAGE with a language of ARCHDEF and use the package identifier or change
code as the name for each member name. Or you can define a single architecture
member and update the change code values in that member for each new build or
promote by change code.

Only those CCODE statements that appear in the architecture definition specified
as input to the build or promote will be processed. All other CCODE statements
will be ignored. For example, assume that you have architecture definitions ISPF,
PDF, SCLM and ISPFSUB. The architecture definitions contain the following
statements:

When the ISPF architecture definition is built, only members with the change code
A will be included from the build group. The CCODE statements to include
change codes B, C, and D will not be processed for this build because they were
found in included architecture definitions.

During the verification phase of build and promote, SCLM will search the change
code list for members in the build or promote scope at the specified group. If the
member is in scope and the change code appears (or does not appear in the case
where EXCLUDE is specified) on the change code list, it will be included.
Otherwise, SCLM will continue to search for the member beginning at the next
group. Change codes will be processed for all editable members stored in PDS data

* ARCHITECTURE DEFINITION MEMBER ISPF
INCL ISPFSUB ARCHDEF
INCL PDF ARCHDEF
INCL SCLM ARCHDEF
CCODE A INCLUDE

* ARCHITECTURE DEFINITION MEMBER ISPFSUB
CCODE D INCLUDE

* ARCHITECTURE DEFINITION MEMBER PDF
CCODE B INCLUDE

* ARCHITECTURE DEFINITION MEMBER SCLM
CCODE C INCLUDE

Chapter 10. Architecture Definition 255

sets under SCLM control, including architecture definitions. Change codes will be
processed on included members when their data sets are allocated with IOTYPE=I,
KEYREF=SINC. Included members whose data sets are allocated with a KEYREF
of SREF or CREF will not be processed by change code. To process includes
referenced by SREF and CREF allocations:
1. Add FLMINCLS macros to reference the desired types.
2. Change the FLMALLOC macros to use KEYREF=SINC.
3. Add an INCLS parameter to the FLMALLOC macros to reference the

FLMINCLS macros.

The architecture definition specified as input to the build or promote will always
be processed, regardless of its change codes. Change codes are only significant for
the build or promote group. In scope members found above this group will be
included regardless of change code. If the specified change appears on a member’s
change code list but is not the last change and INCLUDE is specified, a warning
message will be issued.

We recommend you build and promote each change to a member before beginning
another. In cases where this is not possible, multiple changes that affect a single
member should be built or promoted together. For instance, assume that you have
members A, B, and C. Change 1 affects members A and B while change 2 affects
members A and C. As both changes affect member A, the inclusion of either
change without the other will cause the changes to be unsynchronized. Change
codes 1 and 2 should be built and promoted together.

To build an application containing dynamic includes by change code, a build
without change codes must occur first. Otherwise, the build can fail because
includes are missing.

A promote by change code must always be preceded by a successful build of the
same architecture definition. At the completion of a promote by change code,
rebuild the application at the higher group. Change codes are used to determine
whether or not a member found at the report input group will be included in the
Architecture Report when executing the Architecture Report Utility against an
architecture definition containing CCODE statements. The Database Contents
Utility, on the other hand, does not use change codes specified on CCODE
statements to determine whether or not a member will appear in the report or
tailored output.

Architecture Statements

You must use a special SCLM architecture language when you create architecture
members. This language consists of statements that identify necessary information.
The following paragraphs discuss the statements and their formats.

Statement Format

You must use a specific format for architecture members. Architecture definition
data sets must be fixed block (FB) with a length of 80 bytes or characters. Only one
statement can appear in each 80-byte record. A record ranges from columns 1
through 72, and the records cannot be continued. SCLM ignores information that
appears after column 72.

Write the statements in either upper- or lowercase. You can write all statements,
except for CMD, PARM, and PARMx statements, in a free format as long as the

256 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

items within the statements are in the correct order. The number of blank spaces
between each item is not significant (except in the CMD statement).

The order of statements is generally not significant. For example, you can place
OBJ statements before or after SINC statements. The only statements for which the
order is significant are those keywords that cause data to be concatenated into the
input stream (INCL, INCLD, CMD and LINK for LEC architecture members; SINC
and CMD for CC and generic architecture members); or into the translator options
(PARM and PARMx).

Member and type names must follow MVS naming conventions. SCLM does not
check parameters and control statements for validity. They can continue up to and
including column 72.

All members explicitly referenced by an architecture statement MUST exist in the
type specified in the architecture statement. However, SCLM uses extended types
and include sets to resolve the parsed dependencies of members referenced by a
SINC statement if necessary.

Statement Uses

SCLM distinguishes architecture members from one another by their content.
SCLM assumes, for example, that a member containing both an OBJ statement and
a SINC statement is a CC architecture member, and that a member containing a
LOAD statement is an LEC architecture member.

Architecture statements provide information about the design of applications in the
project database.

Table 16 shows valid statements for each type of member.

Table 16. Valid Keywords for Architecture Member Statements

HL LEC CC Generic

* * * *

CCODE ALIAS CCODE CCODE

COPY CCODE CMD CMD

INCL CMD COMP COMP

INCLD COPY COPY COPY

PROM INCL (2) CREF CREF

INCLD (2) INCL INCL

KREF INCLD INCLD

LINK (2) KREF KREF

LIST LINK LINK

LKED LIST LIST

LMAP LKED LKED

LOAD (1) OBJ (1) OUTx

OUTx OUTx PARM

PARM PARM PARMx

PARMx PARMx PROM

PROM PROM SINC(1)

Chapter 10. Architecture Definition 257

Table 16. Valid Keywords for Architecture Member Statements (continued)

HL LEC CC Generic

SINC SINC(1) SREF

SREF SREF

1: Each of the following statements must be present in the architecture definition member:

v An LEC member must contain exactly one LOAD statement
v A CC member must contain exactly one OBJ statement and at least one SINC statement
v A Generic member must contain at least one SINC statement.

2: An LEC member must contain at least one of the following statements: INCL, INCLD,
LINK, or SINC.

Each architecture statement is composed of a keyword followed by one or more
operands. For those keywords that allow you to specify either a member name or
an asterisk (*), specify an asterisk if you expect multiple outputs per DD statement.
Otherwise, specify the member name if only a single output is expected. The
following list shows the valid statements, their usage, and their format:

* Identifies an architecture comment statement on a line by itself.

* <comment>

ALIAS Identifies load module aliases to be generated. Use it only in LEC
architecture members. The type_name specified on the ALIAS
statement must be the same as the type_name on the LOAD
statement of the LEC architecture member.

ALIAS <member_name> <type_name> <optional_comment>

CCODE Identifies a change code to be included or excluded from a build or
promote.

Any change code that contains an embedded blank or whose first
character is other than A-Z, 0-9, @, # or $ must be enclosed in
delimiters. A delimiter can be any character not specified above.

Valid values for the include flag are INCLUDE and EXCLUDE. The
flag can be abbreviated but must be followed by a space. If no
value is specified, the default is INCLUDE. Examples of valid flags
are I, E, IN, EX, INCL, and EXCL.

CCODE change_code <optional_include_flag> <optional_comment>

CMD Identifies command statements to be included with inputs to the
compiler, linkage editor, or other processors. The statement is
positional; therefore, all blanks following this statement starting
after the first blank are significant. Do not include the
optional_comment with the CMD statement because it will be part
of the control statement. The CMD statement is not valid in HL
architecture members.
CMD <control_statement>
CMD PARMS /Ss /DIPF
CMD ACTION IPFCP

The FLMLTWST translator reads the build map for ACTION and
PARMS control statements. ACTION may be used for additional
workstation commands. PARMS may be used to identify strings to
be added to the workstation command. These control statements
are different than the ACTION and PARMS keywords that may be
used in the OPTIONS list for FLMLTWST. The PARMS value in the

258 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

OPTIONS list is added to all workstation commands whereas the
string following the PARMS control statment in the build map is
appended to the workstation command being created at that time.
See the ″SCLM Reference″ book for additional information.

Note:

CMD statements in an architecture definition will be placed
in the build map with the control statement. The control
statement will only be passed to the build translator in the
controlling language definition if there is also an
FLMALLOC macro with IOTYPE=S. Translators used for
workstation build may read the control statement from the
build map to create a workstation command.

COMP Identifies the name of output member(s) to be created and the type
in which the member(s) reside(s). The function of a COMP
statement is comparable to an OUTX statement. Use it only in CC
and generic architecture members.

COMP <member_name | *> <type_ name> <optional_comment>

COPY Identifies another architecture member to be inserted into this
architecture member.

The COPY statement of the architecture language provides you
with the ability to simplify related, complex architecture members.
To simplify architecture members with similar contents, use the
COPY statement to isolate identical statements into a separate
member and reference the member. Referenced members must
follow all formatting rules for architecture members.

The COPY statement results in a direct insert of the contents of the
specified member into the respective architecture members.
Therefore, using a copy architecture member is an efficient way to
group sets of commonly used architecture statements into a single
area. Additions to and deletions from the common architecture
member affect all the architecture members referencing the
member.

COPY <member_name> <type_name> <optional_comment>

Note: Use the COPY statement rather than the INCL statement
(see the following description) when the specified member
cannot be processed independently from the architecture
definition in which it appears.

CREF Identifies the type that will be substituted into the @@FLMCRF
variable for include-set definitions. The @@FLMCRF variable can
be used in the list of types to be searched for includes. If no CREF
statement is specified in the architecture member, the DFLTCREF
value will be used from the language definition. If both the CREF
statement and DFLTCREF parameter are omitted the @@FLMCRF
variable is ignored. Use the CREF statement in CC and generic
architecture members.

CREF <type_name> <optional_comment>

INCL Identifies another architecture member that this architecture

Chapter 10. Architecture Definition 259

member references. The referenced architecture member will be
processed prior to this architecture member.

Additionally, if INCL is used in an LEC architecture member, the
output from the INCL is used to create the load module for the
LEC.

Only CC and LEC architecture members should be referenced by
an INCL statement in another LEC architecture member. For CC
architecture members, the output referenced by the OBJ keyword is
used to create the load module; for LEC architecture members, the
output referenced by the LOAD is used.

INCL <member_name> <type_name> <optional_comment>

Note: Use the INCL statement rather than the COPY statement
(see the previous description) when the specified member
can be processed independently from the architecture
definition in which it appears.

INCLD Identifies a source member that this architecture member
references. The referenced member will be processed prior to this
architecture member.

Additionally, if INCLD is used in an LEC architecture member, the
output from the INCLD is used to create the load module for the
LEC. The language definition for the member referenced by the
INCLD statement must have a build output with KEYREF=OBJ.

INCLD <member_name> <type_name> <optional_comment>

KREF Identifies the output keywords from other members that will
become inputs to the member containing the KREF statement. The
keywords identified by the KREF statement must be architecture
statements that identify outputs of a build. Examples are OBJ,
LOAD and OUT1. Only those outputs of members referenced by
INCL or INCLD statements in the architecture member containing
the KREF statement will be considered for inclusion.

If the KREF statement is omitted, the outputs that are included
depend on the type of architecture definition. For LEC architecture
definitions, the default is to include OBJ and LOAD outputs. For
all other types of architecture definitions, the default is not to
include any outputs produced by referenced members.

If a KREF statement is specified in an LEC architecture definition,
the defaults of OBJ and LOAD will be lost. To include another
output type in addition to OBJ and LOAD, three KREF statements
must be specified: one for OBJ, one for LOAD, and one for the
additional output type (OUT1 for example).

Valid reference keywords are: COMP, LIST, LMAP, LOAD, OBJ,
and OUTx.

KREF <reference_keyword>

Note: Although multiple KREF statements can be coded in a single
LEC architecture member, duplicate KREF statements will
result in an error.

LINK Identifies an output that must be produced prior to this ARCHDEF
being processed. The build function only verifies the contents of

260 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

the output referenced if extended scope is specified. You can
substitute the INCL statement to cause this verification to always
be performed.

Additionally, if LINK is used in an LEC architecture member, the
output referenced is used to create the load module for the LEC.

LINK <member_name> <type_name> <optional_comment>

LIST Identifies the member(s) and type in which the compiler listing is
to reside. The LIST statement is not valid in HL architecture
members.

LIST <member_name | *> <type_name> <optional_comment>

LKED Identifies the language to be used to process the contents of the
architecture member.

Language_id is an 8-character language identifier for a translator.
The language ID specified must correspond to a valid language
identifier defined in the project definition.

If the LKED keyword is omitted, SCLM uses the default language
to process the architecture member. For LEC architecture members
the default language is LE370. For CC and Generic architecture
members the default language is the language of the member on
the first SINC statement.

LKED <language_id> <optional_comment>

LMAP Identifies the member(s) and type in which the linkage editor
listing (load map) is to reside. Use it only in LEC architecture
members.

LMAP <member_name | *> <type_name> <optional_comment>

LOAD Identifies the load module(s) to be created and the type in which
the load modules(s) reside. Use it only in LEC architecture
members.

LOAD <member_name> <type_name> <optional_comment>

OBJ Identifies the name of the object module(s) to be created and the
type in which the module(s) reside. Use it only in CC architecture
members.

OBJ <member_name | *> <type_name> <optional_comment>

OUTx Identifies the output member(s) to be created and the type in
which the member(s) reside. Replace the x with an integer to
identify the specific statement. Valid integer replacements are 0
through 9. You can use these statements to track additional outputs
other than the standard outputs described by the statements OBJ,
COMP, LIST, LOAD, and LMAP. Use the OUTx statement in an
LEC, CC, or generic architecture member.

OUTx <member_name | *> <type_name> <optional_comment>

PARM Identifies parameters (options) to be passed to all build translators
of a compiler, linkage editor, or other processor. Use it in generic,
CC, or LEC architecture members. Do not use this keyword to pass
parameters to non-build translators such as VERIFY, PURGE, and
COPY.

Chapter 10. Architecture Definition 261

SCLM offers a set of variables that you can use to dynamically
provide information to compilers, linkage editors, and other
processors. Use these variables with the PARM statement.

Do not use the optional_comment with the PARM statement
because it will be passed to the build translators.

PARM <parameters>

PARMx Identifies parameters (options) to be passed to build translators of
an SCLM language. Replace the x with an integer to identify the
specific statement. Valid integer replacements are 0 through 9. You
can use the SCLM variables, mentioned previously, with the
PARMx statement. You can use the PARMx statement in generic,
CC, and LEC architecture members. Do not use this keyword to
pass parameters to non-build translators such as VERIFY, PURGE,
and COPY.

Do not use the optional_comment with the PARMx statement
because it will be passed to the build translators.

If the PARMx keyword used in the architecture member is not
specified in one of the FLMTRNSL macros (using the PARMKWD
parameter), SCLM ignores the PARMx statement.

PARMx <parameters>

Notes:

1. The complete options list passed to the build translator has a
maximum length of 512 characters and has the following
format:

string1
,string2
,string3

where

string1
contains the options from the OPTIONS parameter on
the FLMTRNSL macro.

string2
contains the options from the PARM statements in the
architecture definition. No commas are inserted
between PARM statements.

string3
contains the options from the PARMx statements in the
architecture definition. Commas are inserted between
PARMx statements.

Leading and trailing blanks are removed by SCLM.

For example, suppose that the FLMTRNSL macro specifies that
the following options are to be passed to a translator:
OPTIONS=(NOXREF)

Further suppose that there is an architecture definition for the
translator with the following parameters defined:

262 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

PARM PARAMETER1
PARM PARAMETER2
PARM PARAMETER3
PARM1 PARAMETER4
PARM2 PARAMETER5
PARM3 PARAMETER6

The options passed to the translator would look like this:
NOXREF,PARAMETER1PARAMETER2PARAMETER3,PARAMETER4,PARAMETER5,PARAMETER6

2. Parameters specified on the PARM and PARMx statements in
an LEC architecture member are passed to the linkage edit
translator but not to any of the compilations needed to produce
object or load modules for the linkage edit operation.

3. You should review the documentation of each build translator
for unique handling requirements of passed parameters (for
example, case and handling of special characters).

PROM Identifies a text member, such as design, data, or test plans, to be
promoted along with the modules processed in this architecture
member. The member specified is not processed by build (for
example, compiled or linked) but is tracked during promotions.
You can specify an additional parameter to indicate whether date
checking is to be performed for the member.

Date_check is a special optional parameter for the PROM statement
to bypass date checking for noncompilable/nonlinkable members.
A nonblank, such as N, as a third parameter on the PROM
statement indicates to the build and promote functions to bypass
date checking for that member (thereby eliminating the need to
build before promoting) when you modify the member.

Note: Do not use the optional_comment with the PROM statement
because it can cause build and promote to bypass date
checking.

PROM <member_name> <type_name> <date_check>

SINC When used in generic and CC architecture members, the SINC
statement identifies the source member. When used in an LEC
architecture member, the SINC statement identifies the member or
group of members to pass to the linkage edit translator. Use it only
in generic, CC, and LEC architecture members.

SINC <member_name> <type_name> <optional_comment>

You can specify multiple SINC statements in an architecture
definition. SCLM copies each statement, in the order they appear,
into the temporary file allocated with FLMALLOC IOTYPE=S.

Notes:

1. The input list feature of the Build function is designed to work
with direct translations of source members only (source
members referenced with an INCLD statement). Using the
input list feature with source members controlled by CC or
Generic architecture definitions produces undefined results
(source members referenced with a SINC statement). For more
information on Input List languages and translators, see Part
Two of this book.

Chapter 10. Architecture Definition 263

2. If there is a SINC statement, but no FLMALLOC with
IOTYPE=S, in the language definition for the language of the
member referenced by the SINC statement, the referenced
member is not placed on the SYSIN input stream for the build.

SREF Identifies a type to be allocated during processing. Specifically, use
the SREF keyword to allocate a specific type for translators. You
can use it in generic, CC, and LEC architecture members.

SREF is a function that identifies an additional type to be allocated
during processing. Do not use this function unless you have
extremely complex hierarchical concatenation needs.

SREF <type_name> <optional_comment>

Sample Application Using Architecture Definitions

The following application is composed of two subapplications. Each subapplication
consists of two load modules, that are composed of a series of object modules.
Load module FLM01LD1 and FLM01LD2 contain one object module each, while
FLM01LD3 and FLM01LD4 contain multiple object modules. Figure 98 shows a
diagram of the design of this application (FLM01AP1) and Figure 99 on page 265
shows the architecture members for the FLM01AP1 application.

Note: SCLM tracks the included members; therefore, there is no need to mention
FLM01EQU in the architecture definition.

Figure 98. Application FLM01AP1

264 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Figure 99. Architecture Members for Application Sample FLM01AP1 (Part 1 of 2)

Chapter 10. Architecture Definition 265

The HL architecture member in part 1 of Figure 99 includes references to two
subapplications: (FLM01SB1 and FLM01SB2). The subapplication HL architecture
members reference the LEC architecture members that define the load modules
they contain. Note that the referenced LEC architecture members have the same
names as the load modules they produce.

The LEC architecture members contain all the information necessary to produce
the load modules in the application. Two PARM statements in FLM01LD1 override
the default linkage editor options.

Load modules FLM01LD3 and FLM01LD4 contain copy statements. These
statements identify the architecture member FLM01ARH, that references two
source modules for SCLM to insert into the FLM01LD3 and FLM01LD4 load
modules.

Thus, copy architecture members are an efficient technique for grouping commonly
used architecture statements into a single member. Additions to and deletions from
FLM01ARH affect FLM01LD3 and FLM01LD4 and all the other architecture
members that might reference FLM01ARH.

Ensuring Synchronization with Architecture Definitions

SCLM ensures that all modules within the scope of a build are synchronized. If
you build a source module, SCLM synchronizes the resulting object and listing
with the source. If you build an architecture definition, SCLM synchronizes all
members used as input to the builds and all members output from the builds.
However, if there are object or load modules outside the scope of a particular build
that are dependent on source modules within the scope of that build, those source,
object, and load modules might no longer be synchronized.

Figure 99. Architecture Members for Application Sample FLM01AP1 (Part 2 of 2)

266 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

In the following example, object modules OBJ1, OBJ2 and OBJ3 are produced by
compiling source modules SOURCE1, SOURCE2 and SOURCE3, respectively.
SOURCE2 might be the source module for an I/O routine many applications use.
Load module LOAD1 is the result of linking OBJ1 and OBJ2, while LOAD2 results
from the link edit of OBJ2 and OBJ3. LOAD1 and LOAD2 might be two separate
programs that run against the same kind of data and would therefore need to have
a common I/O routine (SOURCE2). FLM01AP1 and FLM01AP2 are LEC
architecture definitions that describe how to link edit LOAD1 and LOAD2,
respectively. Finally, TOPARCH is a high-level architecture definition that includes
FLM01AP1 and FLM01AP2.

In Figure 100, all of the modules shown in the diagram exist only in the production
layer of your SCLM-controlled hierarchy and all source, object and load modules
are synchronized. In other words, for each load module, the hierarchy contains the
exact version of the object modules that were used to link edit that load module.
For each object module, the hierarchy contains the exact version of the source that
was compiled to create that object module. You can always recreate exactly (except
for time stamps) the object and load modules for the applications.

With this structure, you must pay close attention to which architecture definitions
you use to build and promote development changes. The following scenario
describes the INCORRECT use of architecture definitions, which leads to a loss of
synchronization between source and load.

A user puts in a request for a change to LOAD1 and you decide that the way to
implement that change is to modify SOURCE2. Because you are making a change
to LOAD1, you also decide (in error as it will turn out) to use FLM01AP1 to drive
your builds and promotes. When your changes are made and you are ready to
build, you cause SCLM to rebuild OBJ2 (because SOURCE2 changed) and LOAD1
(because OBJ2 changed), by specifying FLM01AP1 on the Build panel. LOAD2 is
not rebuilt, even though OBJ2 changed, because LOAD2 is outside of the scope of
architecture definition FLM01AP1. Herein lies the problem. When you promote
FLM01AP1, SCLM checks that everything that needs to be rebuilt (within the scope
of FLM01AP1) has been rebuilt. Unfortunately, modules outside the scope of
FLM01AP1 should be rebuilt as well.

When complete, all modules within the scope of FLM01AP1 are synchronized and
recreatable. However, LOAD2 was outside the scope of the architecture definition
you used and is not recreatable. Therefore LOAD2 is not synchronized with its
source.

Figure 100. Example of Synchronization

Chapter 10. Architecture Definition 267

To avoid this problem, you must analyze the architecture of the applications in
your SCLM-controlled project and choose an architecture definition with a scope
that contains all modules that need to be rebuilt. The correct architecture definition
would have been TOPARCH in the example because only TOPARCH has both
LOAD1 and LOAD2 within its scope. These modules have to be relinked because
of a change to SOURCE2.

It is strongly suggested that you have one high-level architecture definition with a
scope that includes every module controlled by an SCLM project. You can use
architecture definitions with much smaller scopes in your day-to-day development
work. However, if you do that, you should also check the synchronization of all
modules in the project by performing a build on the top high-level architecture
definition as part of your testing.

Build Outputs

Several architecture definition statements are used to identify the outputs of a
build. These statements are: ALIAS, COMP, LIST, LMAP, LOAD, OBJ, and OUTx.
These statements have two parameters. The first is the member name of the output
and the second is the type name of the output. The type name parameter must be
a type name from the project definition. The member name parameter can be either
a valid PDS member name or an ″*″. A PDS member name can be used when there
is a single output with a predefined member name. PDS member names must be
used for the ALIAS and LOAD architecture statements. An ″*″ must be used if
there are multiple outputs or the output member name is not predefined.

Build allocates temporary data sets to hold the outputs generated by the build
translators. If all the translators complete successfully the outputs from the
temporary data sets are copied into the SCLM hierarchy. Since the copy does not
take place until all translators have completed the allocation of the output data sets
must be retained without over writing the output until after the last translator
runs.

Multiple Build Outputs

Multiple output members may be generated for a single output keyword if the
IOTYPE on the FLMALLOC for the translator output is ″P″. This allows the
translator to store multiple members into a PDS data set. When a PDS member
name is specified on the output architecture statement SCLM will copy a member
with that name from the temporary data set into the SCLM hierarchy. The member
name in the temporary data set must match the SCLM member name. When an ″*″
is specified in the member name parameter then SCLM will copy all outputs in the
temporary data sets without changing the member names.

Sequential Build Outputs

A single build output may be generated into a sequential data set by using an
FLMALLOC with IOTYPE=O. When the output architecture statement indicates a
member name the output will be copied to an SCLM member of that name. When
an ″*″ is specified for the output member the member name will be the name of
the architecture definition.

268 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Default Output Member Names

When a source member is built directly, either as the input member to the build or
by an INCLD statement, the output member name is determined from information
in the project definition or by SCLM defaults. If the FLMALLOC statement for the
output specifies a default member name using the DFLTMEM parameter then that
member name will be used. When no default member name is specified the output
member name will depend on the type of output data set which is generated. If
the output is sequential the member name will be the same as the source member.
If the output is a partitioned data set then an ″*″ will be generated for the output
member name. See the previous description of ″Multiple Build Outputs″.

Languages of Output Members

SCLM gets the language of the output member from one of two locations. The first
place SCLM looks is on the FLMALLOC statement in the project definition for a
LANG parameter. If it is found then it is used as the language of the output
member. When no LANG parameter is found and a source member is being built
the language of the source member is used as the language of the output member.
If an architecture definition is being built and no LANG parameter was found,
then the language used to build the architecture definition is used as the language
of the output member.

Chapter 10. Architecture Definition 269

270 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 11. Managing Complex Projects

This chapter describes additional SCLM features that you can use to define and
manage complex projects. Topics discussed in this chapter include:
v Impact assessment techniques
v Dependency processing implementation
v Propagating applications to other databases.

Impact Assessment Techniques

Making updates to a component of an application without full knowledge of their
effect on the application can cause a large number of unexpected recompilations.
Impact assessment is a technique you can use to assess the impacts of updates to
an application before they occur. It allows developers to determine what effect
changing a given component of the application has on the rest of the application or
a given subapplication. Impact assessment enables you to avoid time-consuming
recompilations.

Follow the procedure below to use SCLM Build to create an impact assessment:
1. Use the SCLM editor to save the members you want to change

a. in an empty development group or
b. save them with a change code.

2. Invoke the build function using the report mode on the top architecture
definition for the application affected. If you saved with a change code, create a
new top architecture definition that includes the old top architecture definition
and uses the CCODE keyword to include the change.

3. Examine the resulting build report. This report reflects all output that
regenerates when the build is performed. The build messages data set indicates
which translators are invoked.

4. If the results are acceptable, you can proceed with your planned changes.
Otherwise delete the members you saved in Step 1 using the SCLM Library
utility or the Delete group utility.

You can perform a second method of assessing impacts by using an SCLM
architecture report. Examine this report for the members that the developer wants
to modify. Starting with the members to be modified, you can identify all
architecture members that control the modified members. While this technique is
more meticulous than the first, it does not require that the member be drawn
down, modified, and built.

Either of the preceding techniques help identify costly recompilation impacts.

Dependency Processing

This section explains how SCLM handles include dependencies. If SCLM does not
provide a sample for a language you want to support, use this information to map
the language dependencies to SCLM dependencies.

© Copyright IBM Corp. 1990, 1999 271

SCLM derives dependency information when a member is parsed. This
information is stored as SCLM control data, and it allows SCLM to perform the
following functions:
v Process members in the correct order
v Determine when members are out-of-date (changed) and need to be rebuilt
v Determine the scope for functions such as build and promote.

The following describes the processing involved for each include dependency.

A member is included if it is required for completion of a compile of the member
that references it. Examples are members referenced by the %INCLUDE directive
in Pascal, the COPY operand in Assembler, the COPY command in Cobol, and the
imbed (.im) in Script. Assembler macros are also considered to be includes because
they must be expanded when the referencing member is assembled.

The primary input to the compiler defines the SCLM controlled data sets to search
for includes. The primary input to the compiler is referenced directly on the build
panel or via the SINC or INCLD architecture definition keywords in SCLM. If
more than one SINC keyword is used in an architecture definition, the primary
input is the member referenced by the first SINC.

Any member can have include dependencies. SCLM recursively searches for
included members beginning with the primary input to find all of the
dependencies that are needed for the compilation.

The language of the primary input defines which types are searched to find
includes. The FLMINCLS macro is used to specify which types are searched and
the order in which they are searched. For more information on how includes are
found, see Part Two of this book.

Included members can be editable or non-editable.

Included members must exist and have valid accounting information when the
member that references them is built. Build does not attempt to compile members
that have missing include dependencies.

Build rebuilds the primary input member if any of its recursive includes have
changed since it was last built.

Propagating Applications to Other Databases

You can use EXPORT or IMPORT to propagate systems by moving code from a
development group to a production group.

You can also use the EXPORT and IMPORT utilities to backup and restore data
from an SCLM hierarchy. The steps necessary to backup and restore the project
database are listed as follows:
1. Export the group to be backed up using the EXPORT service.
2. Save the member text in a PDS for later recovery if necessary.
3. To restore the data, create an alternate definition that specifies a new temporary

development group into which you will import the previously exported data.
4. Specify the export data sets to be restored on the FLMCNTRL macro.

272 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

5. Copy the saved member text for the backed up group to the new temporary
group.

6. Invoke the IMPORT service and specify the new temporary group. Note that
after the IMPORT service has completed, the new group contains the same data
that was originally exported.

7. If you use the new group, use the DELGROUP service to purge the data in the
original group, delete the original data sets, and rename the temporary group
to the original group name. Another way of accomplishing the same goal is to
delete the accounting data out of the original group and then import directly
into it.

Note: The IMPORT service erases the exported data after it successfully imports
members. Therefore, you may want to make a copy of the export data sets
before invoking the IMPORT service if you want to preserve the backup
version of the data sets.

Chapter 11. Managing Complex Projects 273

274 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Part 3. CSP, DB2, and Workstation Support

© Copyright IBM Corp. 1990, 1999 275

276 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 12. Cross System Product Support

SCLM Support for CSP/370AD 4.1

This chapter explains how SCLM supports the development of Cross System
Product applications.

Using SCLM with CSP/370AD 4.1, General Information

This chapter explains how SCLM supports the development of Cross System
Product applications.

You can build and promote CSP/370AD 4.1 (CSP/370AD) applications, tables, and
map groups from SCLM. The generated CSP/370AD applications can support DB2
processing.

Before you can use SCLM with CSP/370AD 4.1 and DB2, you must ensure that
both systems are already installed and fully operational; otherwise, SCLM cannot
interact with them. You must also provide the required customization of any
CSP/370AD 4.1 and DB2 options, such as COBOL generation options. To allocate
the data sets for CSP/370AD, you must execute the CSP/370AD CLIST
EZECSPGN under TSO.

For more information on how to use CSP/370AD to generate CSP/370AD
members and prepare load modules, refer to IBM SAA Cross System Product
Generating Applications V4R1. For more information on how to use CSP/370AD
Runtime Services (CSP/370RS) to run the load modules, refer to IBM SAA Cross
System Product Running Applications V4R1. For more information on the syntax of
the CSP/370AD commands, refer to IBM SAA Cross System Product Commands and
Utilities V4R1

In CSP/370AD 4.1, the definition for the CSP/370AD components is stored in the
CSP/370AD member specification libraries instead of in SCLM, which means that
you cannot use the SCLM Editor to create and update CSP/370AD source
members. However, the CSP/370AD-generated outputs are stored in partitioned
data sets, which can be stored under SCLM control.

To use CSP/370AD with SCLM, you must create an SCLM source member that
represents a CSP/370AD component stored in the MSLs. This type of member is
called a CSP/370AD proxy CSP/370AD proxy members tell SCLM how to build
and promote an application, map group, or table. CSP/370AD proxy members
contain CSP/370AD commands that are passed to CSP/370AD for processing
during SCLM Build. The only required command is the CSP/370AD GENERATE
command, which indicates the application to generate and the options to use
during the generation. During SCLM Promote, the CSP/370AD proxy member
indicates to CSP/370AD the members to copy and purge from the MSLs. The
CSP/370AD proxy members are described further in “Step 1. Create CSP/370AD
Proxy Members” on page 309.

© Copyright IBM Corp. 1990, 1999 277

If you are using CSP/370AD with DB2, you must create a DB2 CLIST member
under SCLM control that specifies the DBRMs to be bound into a DB2 Plan. DB2
CLIST members are described in “Step 2. Create DB2 CLIST Members” on
page 314.

Build maps and accounting information are attached to the CSP/370AD proxy
members. The build maps contain information on the members stored in PDSs
(such as the generated COBOL source code) and the timestamps for the CSP
members that are associated with the application, table or map group referenced in
the proxy. These associates are identified by SCLM as external dependencies; if the
timestamps of any of these dependencies change, the proxy must be rebuilt.

You can reference CSP/370AD proxy members from architecture definitions.
Multiple CSP/370AD members can be built simultaneously by referencing each
CSP/370AD proxy member in a single high-level architecture definition. If several
applications that reference the same proxy member are built at the same time,
CSP/370AD generates them in sequence.

Figure 101 on page 279 illustrates many of the basic data relationships between
CSP/370AD 4.1 and SCLM. Build reads the CSP/370AD proxy member, accesses
the CSP/370AD MSLs, invokes the command to generate the CSP/370AD member,
and stores the outputs in PDSs controlled by SCLM. Promote copies the members
from the MSL that corresponds to the SCLM ‘From Group’ to the MSL that
corresponds to the SCLM ‘To Group’ using the CSP/370AD COPYLIST command
(not shown in Figure 101 on page 279) and purges the members from the MSL that
corresponds to the SCLM ‘From Group’ using the CSP/370AD DELLIST command.
Then, Promote copies the SCLM-controlled members from the ‘From Group’ to the
‘To Group’, and purges them from the ‘From Group’ when necessary.

278 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Figure 102 illustrates the basic data relationships between CSP/370AD 4.1 and
SCLM when the CSP/370AD application uses DB2. The SQL code is embedded by
CSP/370AD 4.1 in the COBOL source. It is preprocessed and compiled, creating an
object module and a DBRM that are stored in PDSs controlled by SCLM. (DB2
refers to the PDS where the DBRMs are stored as the DBRMLIB.) SCLM runs the
DB2 CLIST to bind the DBRM, creating a DB2 application plan. For more
information on the handling of DB2 CLISTs, see “Chapter 13. SCLM Support for
DB2, General Information” on page 337.

S C L M C ro ss S ystem P rodu ct

T o

PD S

F r o m

PD S

T o
M S L

F r o m

M S L

PD S

M S L s

TR A N S FER

G E N E R AT EB U IL D

P R O M O T E

C ro s s

S y s te m
P ro d u c t

P r o x y
TR A N S FER

Figure 101. CSP/370AD 4.1 Application Control through SCLM Build

Chapter 12. Cross System Product Support 279

For promotes, the DB2 application plan must be freed from the “from group” and
bound in the “to group.” The DB2 CLIST issues a BIND command to bind the
application plan in the “To Group” during the Promote Copy phase. The DB2
CLIST issues a FREE command to free the application plan in the “From Group”
during the Promote Purge phase. Figure 103 illustrates this process.

In a project controlled by SCLM, the tendency is to work at the bottom layers of
the hierarchical structure, because the components that are new or changing

Cross
System
Product

P roxy

BUILD

GENERATE

M SL

Cross System
Product

SCLM

DB2

DBRM
in

DBRM LIB

App lica tion
P lan

BIND

PDS

DB2
CLIST

for
BUILD

DB2
CLIST

for
PROMOTE

Figure 102. CSP/370AD 4.1/DB2 Application Control through SCLM Build

SCLM DB2

DBRM
in

DBRM LIB

BIND
To G roup

App lica tion
P lan

From G roup
App lica tion

P lan

PROMOTE

FREE

DB2
CLIST

for
PROMOTE

Figure 103. CSP/370AD 4.1/DB2 Application Control through SCLM Promote

280 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

generally reside there. The top layers of the hierarchy contain members that have
been tested before. The implication for working with CSP/370AD is that the MSLs
at the top of the hierarchy contain a large number of members, and the MSLs at
the bottom contain only those members that are new or need to be updated.

General Restrictions

Because CSP/370AD members are not directly under SCLM control, several
restrictions apply when building or promoting CSP/370AD applications, map
groups, and tables:
v When promoting a DB2 CLIST, the CSP/370AD proxy that generated the DBRM

is also promoted.
v Concurrent CSP/370AD promote processes using the same user ID are not

allowed. Different users can share MSLs, but the same user cannot run multiple
promotes concurrently. SCLM detects concurrent processes during promote
verification and prevents the promote.

v The name of the CSP/370AD proxy member must be the same as the
CSP/370AD member to be generated. In this way, SCLM automatically creates
the SCLM-controlled members with the same name as the CSP/370AD member.
Otherwise, SCLM creates members with the same name as the CSP/370AD
proxy name, but CSP/370AD tries (unsuccessfully) to place the generated
outputs in members with names that are the same as the CSP/370AD member
being generated.

v SCLM treats all the outputs produced during the build process as noneditable.
This means that members such as the CSP/370AD-generated COBOL source
code, the Parts Control File, and the sample execution JCLs and CLISTs are
noneditable. However, you can browse these members. Furthermore, because the
output members are noneditable, they cannot be placed under versioning
control; for more information, see “Audit and Version Utility” on page 207.
The sample execution JCL and CLIST members generated by CSP/370AD can
contain information that is specific to the group where the build was performed.
For example, the following EXEC statement contains the name of the DEV1
group:
EXEC 'PROJECT.DEV1.MTCLST(EX00A)'

However, when the sample execution JCL and CLIST members are promoted,
their contents are not altered by SCLM, with the result that the information
about the groups might become obsolete. For example, if the promote was from
DEV1 to TEST, the preceding EXEC still refers to DEV1 and not to TEST.

The sample JCL and CLIST members require modifications before they can be
used. Because the sample execution JCL and CLIST members are noneditable,
you must create copies of the noneditable JCL and CLIST members outside of
SCLM. The copied members can be modified for use. For more information,
refer to IBM SAA Cross System Product Running Applications V4R1

v See “Step 1. Create CSP/370AD Proxy Members” on page 309 for specific
restrictions on the CSP/370AD proxy members.

v The translators provided by SCLM for CSP/370AD 4.1 send messages to the
listings file.

v CSP/370AD does not provide SCLM with specific information about what has
changed in tables and maps. If SCLM detects that the timestamp has changed

Chapter 12. Cross System Product Support 281

for a CSP/370AD member that has an entry in a proxy’s build map, the proxy is
rebuilt (even though the actual changes in the table or map might not require a
complete rebuild).

v Each EZEWORK data set must be allocated to only one process at a time.
To reduce the possibility that two developers might contend for the same
EZEWORK data set, each developer should work in a separate development
group.

v The SCLM group hierarchy and the CSP/370AD MSL hierarchy must have a
one-to-one correspondence. The only exception is that CSP/370AD can have
read-only library MSLs that can be concatenated at the beginning or end (but
not the middle) of the hierarchy. Because CSP/370AD has a limit of six MSLs in
the concatenation sequence, the SCLM group hierarchy can contain up to six
layers. (If the library MSLs are concatenated first, the hierarchy can contain up
to five layers.) This includes both key and non-key groups in SCLM.
By default, the language definitions for CSP/370AD use the LIB1ST=N
parameter in the OPTIONS of the FLMTRNSL macro for the Verify translator
(FLMTCVER) and Build translator (FLMTCLGT); this specifies that the library
MSLs will be concatenated last. You can change the value of LIB1ST to Y if you
want the library MSLs to be concatenated first. There is no provision for
automatically concatenating the library MSLs in the middle of the development
groups; if you want to concatenate library MSLs in the middle of a development
group, use the GROUP tags in the proxy member.
If you use LIB1ST=Y (library MSLs to be concatenated first), all the MSLs must
be in CSP/370AD 4.1 format. In other words, if you were using CSP/AD 3.3,
you must migrate the MSLs to CSP/370AD 4.1 format. (If a member is found in
CSP/AD 3.3 format, CSP/370AD 4.1 will try to reformat the member. A
read-write MSL is required for this process, however, and no read-write MSL is
assigned by the translators when LIB1ST is set to Y, so this reformatting attempt
will fail.)

v All the MSLs to be used must contain at least one CSP/370AD member. It is
recommended that each MSL should contain at least one dummy member that is
not associated with any other CSP/370AD member. This dummy member is not
copied or deleted during a promote.

v The example language definitions for the support of the CICS/OS2 CSP/370AD
target environment provide only for the generation of COBOL source code.
There is no attempt to perform a compilation step at the workstation. For more
information on compiling at the workstation, refer to IBM SAA Cross System
Product/2 Runtime Services User’s Guide and Reference (online manual.)

v See “Step 4. Allocate the PROJDEFS Data Sets” on page 296 for specific
restrictions on the MSL Control File.

v The IMS MFS language definitions provided by SCLM produce outputs stored in
IMS data sets that are not under SCLM control; also, the xxMFS members in the
SCLM hierarchy do not keep track of these outputs in the build map. This
means that when an xxMFS member is promoted in the SCLM hierarchy, there is
no corresponding promotion of the members in the IMS data sets.
Furthermore, the IMS MFS language definitions use only one set of IMS data
sets for the outputs: CSP.IMSC.REFERAL and CSP.IMSC.FORMAT. This means
that the outputs from one build will be overwritten by the next build. See
“Define the Language Definitions” on page 302 for recommendations on how to
specify one set of these data sets per SCLM group.

v The language definitions provided with SCLM do not use CSP/370AD 4.1
Linkage Tables.

282 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Recommendations
v Avoid modifying the same CSP/370AD member simultaneously in more than

one development MSL. If a CSP/370AD member is being modified by two or
more programmers in parallel, some modifications might be overlaid during
promote.
For example, in a large application, two programmers might be modifying the
same CSP/370AD member in different development groups. It is possible that
one programmer could build an application with one version of a CSP/370AD
member and promote it. Another programmer might build the application with
another version of a member and promote it, overlaying the first modifications
of the programmer.

v The following data sets can be used for debugging:
1. The data set project.group.FLMOUTF contains messages generated by

CSP/370AD.
2. The data set userid.BUILD.LISTxx contains messages generated by

CSP/370AD and any other invoked translators.

If ’ERROR LISTINGS ONLY ===> YES’ is specified on the Build panel, the
userid.BUILD.LISTxx data set is generated only if the return code from the
translator is greater than the GOODRC parameter in the FLMTRNSL macro in
the language definition.

If ’ERROR LISTINGS ONLY ===> NO’ is specified on the Build panel, the
userid.BUILD.LISTxx data set is generated regardless of the return code.

v You might modify the CSP/370AD generation options for one or more target
environments by following the instructions in ″Chapter 2. Establishing COBOL
Generation Options″ in IBM SAA Cross System Product Generating Applications
V4R1 In this way, you might not need to enter the same generation option in
each CSP/370AD proxy for the same target environment.

v Do not specify SAVE(YES) on the GENERATE command. SAVE(YES) will result
in an MSL update and an error message caused by a mismatch between the date
and time.

v If you are going to use only one target environment during the generation of
CSP/370AD systems, you can name the types of data as ARCHDEF, SOURCE,
PROXY, LOAD, and so on.
However, in order to provide support for multiple target environments during
the generation of CSP/370AD systems, it is recommended that you name the
types of data with reference to each target environment. The language
definitions to support CSP/370AD 4.1 follow the naming conventions shown in
“Recommended Naming Conventions” on page 287. You can use any naming
convention that fits your needs.

Note: If you change the type names, you must change the language definitions
to reflect the new naming conventions that you choose.

v In view of the previously mentioned restrictions, you might want to develop a
copy translator that would update members that contain group-sensitive
information (such as JCL, CLIST, and CSP/370AD Parts Control Files.)
Another recommendation is to use only the member names, instead of the fully
qualified names. For example, instead of
CALL 'project.group.type(EX00A)'

you could use
CALL 'EX00A'

Chapter 12. Cross System Product Support 283

For information on making the generated load modules available, refer to the
instructions in IBM SAA Cross System Product Running Applications V4R1.

v The language definitions provided by SCLM in CSP/370AD are functionally
equivalent to the preparation JCL generated by CSP/370AD; they do not support
the handling of preparation JCL.
If the generation is performed with PREPJCL(Y), the build from SCLM will fail
because SCLM will not allocate the EZEJCLP ddname that CSP requires for
storing the preparation JCL. Specify PREPJCL(N) in the COBOL Generation
Options file in CSP/370AD. For more information on establishing COBOL
generation options, refer to IBM SAA Cross System Product Generating Applications
V4R1

v The prologues of the language definitions for CSP/370AD contain useful
information such as:
– The CSP/370AD templates of the preparation JCL, which are the basis for the

translator options (DB2 preprocessing, CICS preprocessing, and COBOL
compiler).

– The link-editor parameters (which are used as CMD statements in the LEC
architecture definition members).

– The CSP/370RS procedures, which are the basis for the link-editor options
and for the SYSLIB library concatenation.

– The sample CC architecture definition showing all the keywords that are
generated by the build translators.

– The CSP/370AD DBRM that is needed (if any) in the DB2 CLIST that
references the DBRM created by this language definition.

Miscellaneous

CSPMSL Reserved Word

The CSPMSL reserved word indicates when CSP/370AD members reside in a
CSP/370AD MSL; it is designated in the TYPE column of the Build Map Contents
report. The following examples show the usage of this reserved word:
v When the CSP/370AD proxy member has been successfully built, the Build Map

Contents contains external dependency members that are identified in the
KEYWORD column as EXTDPEND, and the CSPMSL reserved word is listed in
the TYPE column. The EXTDPEND keyword is generated internally in SCLM.
The CSPMSL reserved word is generated by the SCLM Build Translator for
CSP/370AD 4.1 (FLMTCLGT). An example is shown in Figure 104 on page 285.

284 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

v When the Verify translator is invoked, all of the members identified as external
dependencies with types designated as CSPMSL within the Build Map are
translated.
FLM44505 - >> INVOKING VERIFY TRANSLATOR(S) FOR TYPE: CSPMSL

v If any external dependencies were involved in the promote, the Promote Report
contains a section listing them. An example is shown in Figure 105.

STUB Reserved Word

The STUB reserved word indicates that an entry has been placed in the Build Map
for a proxy that has a BUILD MAPG tag. This entry represents the whole set of
maps and their associates that are related to the map group.

This entry helps identify whether a map has been added to a map group since the
last build. The verify translator issues a LISTA command for this STUB member. If
there is a new map, the verify translator modifies the timestamp of the STUB; this
triggers the rebuild of the map group.

Updating the Parts Control File

The Parts Control File member (placed by CSP/370AD in the ddname EZEPCTL)
contains a list of the parts that were created during a CSP/370AD generation. Each

BUILD MAP CONTENTS

Keyword Member Type Last Time Modified Ver
-------- ------------------------------------ -------- ------------------ ---
OUT1 EX60G MTSRC 92/04/13 09:59:35 10
OUT2 EX60G MTPCTL 92/04/13 09:59:35 10
OUT3 EX60G MTFOBJ 92/04/13 09:59:35 2
OBJ EX60G MTOBJ 92/04/13 09:59:35 10
SINC EX60G MTPRXY 92/01/10 19:46:00 2
EXTDPEND EX60G MAPG CSPMSL 91/01/28 14:22:53
EXTDPEND EX60G EX60M01 MAP CSPMSL 91/07/25 08:19:41
EXTDPEND EX60G EX60M02 MAP CSPMSL 91/01/28 14:22:56
EXTDPEND EX60G EX60M03 MAP CSPMSL 91/01/28 14:22:59
EXTDPEND EX60G EX60M04 MAP CSPMSL 91/01/28 14:23:00

* INTERNAL KEYWORDS
EXTDPEND - EXTERNAL DEPENDENCY STORED OUTSIDE SCLM CONTROL

Figure 104. Build Map Contents: Use of CSPMSL Reserved Word

**
** E X T E R N A L D E P E N D E N C I E S
**

PAGE

TYPE: CSPMSL
COPIED TO

MEMBER MESSAGE STGX1
____________________________________ _______ _________

EX60G MAPG X

Figure 105. Promote Report: Use of CSPMSL Reserved Word

Chapter 12. Cross System Product Support 285

entry in this file has a variable named hostpds whose value is the name of the data
set in which the member was stored during the CSP/370AD generation.

When the CSP/370AD generation is invoked during SCLM Build, the CSP/370AD
members are stored in temporary data sets. At this stage, the hostpds values in the
Parts Control File reflect the names of these temporary data sets. At the end of the
build process, SCLM Build copies these members into the permanent physical data
sets. Just before this copy process, the build translator for CSP/370AD 4.1 (named
FLMTCLGT) updates the values of hostpds to reflect the names of these permanent
physical data sets. This is made possible by the use of @@FLMDOx SCLM
variables in the OPTIONS field in the FLMTRNSL macro for that translator in the
language definitions. These @@FLMDOx SCLM variables contain the permanent
physical data set name that is associated with the ddname specified in the
FLMALLOC macro that has the KEYREF=OUTx.

The example in Figure 106 shows the use of EZESRC=@@FLMDO1 in the options
field of FLMTRNSL. The result is that the permanent physical data set name used
for the ddname EZESRC becomes the data set name associated with the
FLMALLOC macro that has KEYREF=OUT1. This example is extracted from the
FLM@XOCM language definition.

An example of the updated hostpds field in the Parts Control File is shown in
Figure 107.

Note: The hostpds field in the Parts Control File is updated only during SCLM
Build. The hostpds field is NOT updated during SCLM Promote, with the

* BUILD TRANSLATOR
*
* STEP 1 --- CSP LIST(A) AND GENERATE TRANSLATOR ---
*

FLMTRNSL CALLNAM='CSP LISTA/GEN', C
FUNCTN=BUILD, C
COMPILE=FLMTCLGT, C
PORDER=1, C
GOODRC=4, C
PDSDATA=Y, C
CALLMETH=LINK, C
OPTIONS=(SCLMINFO=@@FLMINF, C
FLMPROXY=FLMPROXY, C
FLMBCFDD=FLMBATF, C
FLMBCOUT=FLMOUTF, C
FLMMCFDD=FLMMCF, C
FLMEXTDL=@@FLMLIS, C
FLMBSIZE=@@FLMSIZ, C
FLMNEWDD=FLMNLIST, C
SYSTEM=OS2CICS, C
EZESRC=@@FLMDO1, C
EZEPOBJ=@@FLMDO3)

Figure 106. @@FLMDOx SCLM Variable Example

:part name=EX00G type=MAPGROUP system=OS2CICS
hostpds="project.group.type" jobname=USERID
date="04/03/92" time="17:21:41" language=COBOL2 text=YES.
:part name=EX00GFM type=MAPFM system=OS2CICS
hostpds="project.group.type" jobname=USERID
date="04/03/92" time="17:21:41".

Figure 107. Updated hostpds in the Parts Control File

286 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

consequence that the group value of the data set name always refers to the
group where the CSP/370AD generation took place. (The Parts Control File
is not updated during the promote operation because the update process
would change its timestamps, and at the next verification stage it would be
marked as out-of-date with respect to the existing build maps; therefore, a
build would have to be performed after every promote operation.)

Dummy File

In those instances when CSP/370AD does not generate an output object but a
member is specified either in the language definition (by means of the FLMALLOC
macro) or an architecture definition, SCLM creates a dummy member. If the
DINIT=Y parameter is used on the FLMALLOC for the output member, the
dummy member created by SCLM contains one line of text that indicates it is a
dummy member. Otherwise, the dummy member is an empty member.

For example, suppose you are building a Map Group related to batch processing
(such as EX60G from the CSP/370AD Sample Applications) in MVS/TSO. An
architecture definition is defined with an entry for an EX60GFM Map Group
Format Module, but this module is not produced by CSP/370AD. In this case, a
dummy member named EX60GFM is created in SCLM.

In the language definitions that deal with the batch mapping services (members
with suffix P1), a dummy COBOL source code member is provided as a
place-holder to receive the COBOL source generated by CSP/370AD. If
CSP/370AD does not generate the source code, the dummy COBOL source code is
not replaced. The dummy COBOL source code contains comments to identify it as
code provided by SCLM and not generated by CSP/370AD.

Reports from Build and Promote

The Build Report specifies which external dependencies, if any, were modified in
CSP/370AD, causing a rebuild. The Promote Report shows which external
dependencies were copied and purged (if needed) during the promotion. If the
Promote Mode was REPORT, the report indicates which external dependencies will
be involved during the actual copy and purge.

Information For the Project Manager

Recommended Naming Conventions

Names for SCLM Types: The language definitions provided with SCLM use the
following naming convention for the SCLM types.

oexxxxxx

where:
o Indicates the operating system used:

M MVS
O OS/2

e Indicates the environment used:
T TSO
C CICS
I IMS/BMP
V IMS/VS
B Batch

Chapter 12. Cross System Product Support 287

xxxxxx Indicates the kind of members to be stored, such as:
ARCH

ARCHDEF
PRXY PROXY
SRC COBOL source code (CSP/370AD ddname EZESRC)
PCTL Parts Control File (CSP/370AD ddname EZEPCTL)

Example:

MTPRXY
MVS/TSO CSP/370AD proxy Members

Language Definitions for CSP/370AD 4.1: The language definitions provided
with SCLM are models that can serve as references in the construction of language
definitions for a specific application and environment. These language definitions
use the following naming convention:

FLM@Xoef

where:
X Indicates that it is for CSP/370AD.
o Indicates the operating system used:

M MVS
O OS/2

e Indicates the environment used:
T TSO
C CICS
I IMS/BMP
V IMS/VS
B Batch

f Indicates the specific function that is needed:
Q SQL preprocessing will be performed.
M Map Group with Online Mapping Services Program
B Map Group with Batch Mapping Services Program.

Examples:

FLM@XMT
Language Definition for CSP/370AD 4.1 MVS/TSO Tables (No Map
Groups, no DB2 preprocessing).

FLM@XMTM
Language Definition for CSP/370AD 4.1 MVS/TSO Map Groups with
Online Mapping Services Program (No Applications, no Tables, no DB2
preprocessing).

FLM@XMTQ
Language Definition for CSP/370AD 4.1 MVS/TSO Applications with DB2
preprocessing (No Map Groups, no Tables).

FLM@XMBB
Language Definition for CSP/370AD 4.1 MVS/Batch Map Groups with
Batch Mapping Services Program (No Applications, no Tables, no DB2
preprocessing).

See Table 20 on page 300 for the names of the language definitions for CSP/370AD
4.1 provided with SCLM.

288 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Languages for CSP/370AD Proxy Members: The language values from the
language definitions for CSP/370AD 4.1 use the same naming convention shown
in “Language Definitions for CSP/370AD 4.1” on page 288. The only difference is
that the format is:

CSPoef

instead of:

FLM@Xoef

Examples:

CSPMT
Language for CSP/370AD 4.1 MVS/TSO Applications and Tables (No Map
Groups, no DB2 preprocessing).

CSPMTM
Language for CSP/370AD 4.1 MVS/TSO Map Groups with Online
Mapping Services Program (No Applications, no Tables, no DB2
preprocessing).

CSPMTQ
Language for CSP/370AD 4.1 MVS/TSO Applications with DB2
preprocessing (No Map Groups, no Tables).

CSPMBB
Language for CSP/370AD 4.1 MVS/Batch Map Groups with Batch
Mapping Services Program (No Applications, no Tables, no DB2
preprocessing).

See Table 20 on page 300 for the names of the languages for CSP/370AD 4.1
provided with SCLM.

Language Definitions for DB2 CLIST Members: Because of the naming
conventions of file types used for CSP/370AD 4.1, language definitions for DB2
CLIST members have been customized for the different target environments in
CSP/370AD 4.1. The language definitions provided with the product are models
that can serve as references in the construction of language definitions for a
specific application and environment. These language definitions use the following
naming convention:

FLM@Doef

where:
D Indicates that it is for DB2.
o Indicates the operating system used:

M MVS
e Indicates the environment used:

T TSO
C CICS
I IMS/BMP
V IMS/VS
B Batch

f Indicates what kind of SCLM function will be applied:
B Build
P Promote

Chapter 12. Cross System Product Support 289

Example:

FLM@DMTB
Language Definition for DB2 CLIST for MVS/TSO (to be used during
build)

See Table 21 on page 301 for the names of the language definitions for DB2 with
CSP/370AD 4.1 provided with SCLM.

Languages for DB2 CLIST Members: The language values from the language
definitions for DB2 to be used with CSP/370AD 4.1 use the same naming
convention shown in “Language Definitions for DB2 CLIST Members” on page 289.
The only difference is that the format is:

DB2oef

instead of:

FLM@Doef

Example:

DB2MTB
Language Definition for DB2 CLIST for MVS/TSO (to be used during
build)

See Table 21 on page 301 for the names of the languages for DB2 with CSP/370AD
4.1 provided with SCLM.

Language Definitions for MFS: The language definitions provided with the
product are models that can serve as references in the construction of language
definitions for a specific application and environment. These language definitions
use the following naming convention:

FLM@Meff

where:
M Indicates that it is for MFS.
e Indicates the environment used:

V IMS/VS
ff Indicates the specific function that is needed:

TS A series of translators that are equivalent to the MFSTEST
procedure are invoked.

UT A series of translators that are equivalent to the MFSUTL
procedure are invoked.

Note: The IMS/BMP generations can also produce MFS source. The language
definitions provided for IMS/BMP that generate MFS source use the same
processing as the IMS/VS generations. If you want to have separate
language definitions for IMS/BMP, copy the language definitions for
IMS/VS and modify them.

Examples:

FLM@MVUT
Language for MFS for IMS/VS to invoke the set of translators that are
equivalent to the MFSUTL procedure.

290 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

FLM@MVTS
Language for MFS for IMS/VS to invoke the set of translators that are
equivalent to the MFSTEST procedure.

See Table 22 on page 301 for the names of the language definitions for MFS
provided with SCLM.

Languages for MFS: The language values from the language definitions for MFS
use the same naming convention shown in “Language Definitions for MFS” on
page 290. The only difference is that the format is:

MFSeff

instead of:

FLM@Meff

Examples:

MFSVUT
Language for MFS for IMS/VS to invoke the MFSUTL procedure.

MFSVTS
Language for MFS for IMS/VS to invoke the MFSTEST procedure.

See Table 22 on page 301 for the names of the languages for MFS provided with
SCLM.

Multitarget Architecture Definitions: The type name ARCHDEF can be used to
store those architecture definition members that include other architecture
definitions for other target systems.

Generating a Project Environment

Chapter 1. Defining the Project Environment describes the steps required to define
and maintain an SCLM project hierarchy. If CSP 4.1 support is to be implemented,
you must take the following steps in addition to the steps defined in “Chapter 1.
Defining the Project Environment” on page 3.

Step 1. Determine the Project’s Hierarchy: CSP/370AD supports a concatenation
of up to six MSLs. To retain a parallel structure, SCLM supports up to six layers of
(key and non-key) groups. There is no restriction on the number of groups in each
layer.

For a project that already exists but does not meet these restrictions, develop a
plan to determine how to change over to the new database structure.

Figure 108 on page 292 shows an example of the hierarchy structure of SCLM
groups, and Figure 109 on page 293 shows the corresponding hierarchy structure
for the CSP/370AD MSLs. Remember that one SCLM group is a set of one or more
PDSs, but a corresponding CSP/370AD group is only one MSL.

Chapter 12. Cross System Product Support 291

The STG1 and STG2 groups are non-key groups that could serve as intermediate
stages before the code is promoted to TEST.

Figure 108. Example of Hierarchy Structure for SCLM Groups

292 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The language definitions for CSP/370AD have a default of LIB1ST=N in the Verify
and Build translators, indicating that the library MSLs are concatenated last. For
example, if the user builds a proxy from the SCLM group DEV1, the Verify and
Build translators use the MSL named MSLDEV1 as the read-write MSL, and the
MSLs MSLSTG1, MSLTEST, MSLREL, LMSL1, and LMSL2 as the concatenation of
read-only MSLs. Because CSP/370AD allows up to 6 MSLs to be concatenated at a
given time, only 2 library MSLs can be concatenated when the user is working at
the bottom layer of the hierarchy structure.

However, if the project manager changes the value of LIB1ST to Y, the library
MSLs are concatenated first. This means that there is no read-write MSL; also,
because CSP/370AD allows a maximum of 5 read-only MSLs, if LIB1ST=Y is used
the hierarchy can contain only 5 MSLs in the longest concatenation.

For example, if the user builds a proxy from the SCLM group DEV1, the Verify
and Build translators will not use a read-write MSL; the concatenation of read-only
MSLs will be LMSL1, LMSL2, MSLDEV1, MSLSTG1, and MSLTEST. (Note that
MSLREL will not be concatenated.)

Step 2. Identify the Types of Data to be Supported: SCLM supports data in MVS
partitioned data sets; CSP/370AD stores data in VSAM clusters; DB2 stores DB2
application plans in DB2 databases. The recommended type names are based on
the naming convention described in “Recommended Naming Conventions” on
page 287

Figure 109. Example of Hierarchy Structure for CSP/370AD MSLs

Chapter 12. Cross System Product Support 293

page 287. If you decide to use different names, then you must update the language
definitions, as described in “Define the Language Definitions” on page 302.

The Quantity column refers to the number of data sets that need to be allocated for
each SCLM group; if you plan not to use all of the CSP/370AD target
environments, then this number will be lower. If the number is greater than 1, one
data set must be allocated for each CSP/370AD target environment. The PDS Type
column uses the naming convention described in “Recommended Naming
Conventions” on page 287. The allocation parameters for the data sets are
described in Table 19 on page 299.

Table 17. Project Partitioned Data Sets for CSP/370AD 4.1

Quantity PDS Type Description

1 FLMCOPY Contains a temporary copy of the COBOL copybook
for MFS generated by CSP/370AD and used during
the COBOL compilation.

1 ARCHDEF Contains the editable architecture definition members
that control the Build and Promote functions and
describes the structure of the application system for
multiple target environments.

6 oeARCH Contains the editable architecture definition members
that control the Build and Promote functions and
describes the structure of the application system for a
single target environment.

1 oeCLST Contains the noneditable sample execution CLIST
members that CSP/370AD places in the ddname
EZECLST.

This data set is needed only for the following
CSP/370AD environments:

MVS/TSO

2 oeCOPY Contains the noneditable COBOL copybook for MFS
members that CSP/370AD places in the ddname
EZECOPY.

This data set is needed only for the following
CSP/370AD environments:

IMS/BMP
IMS/VS

5 oeDBRM Contains the noneditable input member to a DB2
BIND. Generated by the DB2 preprocessing step.

There is no DBRM generated for CICS OS/2.

294 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 17. Project Partitioned Data Sets for CSP/370AD 4.1 (continued)

Quantity PDS Type Description

5 oeDB2B Contains editable source members (CLISTs) used
during SCLM Build that control Bind/Free functions
for DB2.

DB2B is not required for CICS OS/2.

To have DB2 CLIST members and DBRM members
with the same name, an FLMINCLS macro needs to
be specified in the language definition for the DB2
CLIST members. The FLMINCLS macro must list the
DBRM type first on the TYPES parameter. An example
of an FLMINCLS macro to do this follows:

*
* SPECIFY TYPES TO SEARCH FOR DBRMS THAT ARE TRACKED AS
* INCLUDES TO THE DB2 CLIST MEMBERS
*

FLMINCLS TYPES=(xxDBRM)

5 oeDB2P Contains noneditable source members (CLISTs) used
during SCLM Promote that control Bind and Free
functions for DB2. During a build of a DB2 CLIST (of
type xxDB2B), an identical copy of the DB2 CLIST is
copied in the type xxDB2P into the group being built.
During a promote, this member is called to bind the
plan in the To Group and free the plan in the From
Group.

DB2P is not required for CICS OS/2.

5 oeFOBJ Contains the noneditable Map Group Format Module
(name appended with suffix FM) that CSP/370AD
places in the ddname EZEFOBJ. Only for MVS/TSO
and MVS/CICS.

For CICS OS/2, the Map Group Format Module is
stored in the EZEPOBJ data set, that corresponds to
the xxPOBJ type described in this table.

2 oeJCLX Contains the noneditable sample execution JCL
members that CSP/370AD places in the ddname
EZEJCLX.

This data set is needed only for the CSP/370AD
environments:

MVS/Batch
IMS/BMP

5 oeLIST Contains the noneditable listing from the COBOL
compiler. There is no compiler listing for CICS for
OS/2.

5 oeLMAP Contains the noneditable list map from the linkage
editor. There is no list map for CICS for OS/2.

5 oeLOAD Contains the load module members that are produced
as the output of the link-edit step.

There is no load module generated for CICS OS/2.

Chapter 12. Cross System Product Support 295

Table 17. Project Partitioned Data Sets for CSP/370AD 4.1 (continued)

Quantity PDS Type Description

2 oeMFS Contains the noneditable MFS Control Blocks
members that CSP/370AD places in the ddname
EZEMFS.

This data set is needed only for the CSP/370AD
environments:

IMS/BMP
IMS/VS

5 oeOBJ Contains output members that are generated by the
compilation of COBOL source code.

There is no object code generated for CICS OS/2.

6 oePCTL Contains the noneditable application Parts Control File
members that CSP/370AD places in the ddname
EZEPCTL.

6 oePRXY Contains editable members (Proxy Members) that
control the build and promote of CSP/370AD
applications, map groups, and tables for a specific
CSP/370AD target environment.

1 oePOBJ Contains the noneditable Map Group Format Module
(name appended with suffix FM) that CSP/370AD
places in the ddname EZEPOBJ. This ddname is used
only when the CSP/370AD target environment is
CICS OS/2.

6 oeSRC Contains the noneditable COBOL source code that
CSP/370AD places in the ddname EZESRC.

This could be an optional data set for all the
environments, except for CICS OS/2.

Notes:

1. There is no support for VM and VSE as target environments in CSP/370AD 4.1.
2. If you decide to add more types, such as xxESF to store the External Source

Format, or xxJCLP to store the sample preparation JCL, you will need to
update the language definitions. For more information, see “Define the
Language Definitions” on page 302.

Do not store build outputs in the same data sets as editable source members. If
build output member names match the editable source member names, data can be
overlaid.

Step 3. Establish Authorization Codes: No additional considerations are required
for CSP/370AD support.

Step 4. Allocate the PROJDEFS Data Sets: A project.PROJDEFS.MSLCTRL data
set is required. It should be allocated with the following characteristics: RECFM=FB,
LRECL=80, BLKSIZE=3120. This data set contains an MSL Control Member for each
project definition in the project.PROJDEFS.LOAD data set. The MSL Control
Members describe each CSP/370AD MSL and workfile data set, and specify how
they are related to the SCLM groups. The MSL Control Member name must be the
same as the member name for the project definition or alternate project definition.

MSL Control Member: Table 18 on page 297 specifies how MSL or work data set
names can be assigned to ddnames, allowing Build and Promote functions to

296 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

allocate the necessary CSP/370AD data sets. These allocations are not freed at
function completion. For more information, see Figure 110 on page 299.

Table 18. CSP/370AD 4.1 MSL Control Member Format

BYTES LENGTH DATA DESCRIPTION POSSIBLE VALUES.

01-05 5 KEY LMSL1
LMSL2
LMSL3
LMSL4
LMSL5
MSL
WORK
*

02-80 78 comments
- when KEY is *

comments

06-13 8 GROUP a valid group name

14-25 12 spaces

26-33 8 DDNAME a valid ddname

34-35 2 spaces

36-79 44 DSNAME a valid dsname

80-80 1 space

The contents of the MSL Control Member are described as follows:

KEY
A comment, or one of the following CSP/370AD data types:

LMSL1

LMSL2

LMSL3

LMSL4

LMSL5
These are special system MSL data sets. Up to five system MSLs can be
specified. None are required. Before these system MSLs are allocated, the
standard MSLs are allocated according to the project hierarchy. Because
CSP/370AD allows a maximum of five read-only MSLs, these are allocated
only until the maximum is reached. For example, if the project hierarchy is
three levels deep, then when using LIB1ST=N (library MSLs concatenated
last), only three library MSLs can be allocated; when using LIB1ST=Y
(library MSLs concatenated first), all the library MSLs will be concatenated,
but only the first two development MSLs will be concatenated. These
system MSLs are allocated in the order specified by a numeric suffix (1
through 5).

MSL
The data set is an MSL. Only one MSL can be specified per group.

This entry is required.

WORK
The WORK option allows only one data set to be allocated for each group.
The WORK data sets must be unique for each group; otherwise, results are
unpredictable. The WORK data set is assigned by default to the ddname
EZEWORK.

Chapter 12. Cross System Product Support 297

Other CSP/370AD data sets can be allocated as WORK data sets. However,
these can be more effectively allocated as part of a logon procedure or
allocation CLIST.

* This is a comment line. Comments can span the entire line, regardless of
any column considerations required by other keys. The asterisk (*) must be
placed in column 01 for SCLM to recognize the line as a comment line.

GROUP
The SCLM group name. If the group name is not a valid group in SCLM, the
line in the file is ignored.

DDNAME
The ddnames in the CSP/370AD MSL Control Member must be unique.

The ddname is required when the key is MSL.

For WORK allocations, only one data set per group can have a ddname of
EZEWORK.

DSNAME
The data set name is required. Data set names must be unique to prevent the
same data set from being allocated to different ddnames. Only one data set can
be assigned to each ddname.

Data set names should be fully qualified. Do not delimit the data set names
with quotes. The system will not prefix the current user ID to the data set
name.

The following are recommended data set naming conventions:

v Use the data set prefix, which could contain the SCLM project name, for the
high-level qualifier.

v Use the SCLM group name for the second qualifier.
v The third qualifier should describe a CSP/370AD MSL, or a WORK data set.

You can use the flexible data set naming capability. For more information, see
“Flexible Naming of Project Partitioned Data Sets” on page 13.

Figure 110 on page 299 shows the MSL Control Members for the hierarchies in
Figure 108 on page 292 and in Figure 109 on page 293. The table tells CSP/370AD
to use different PDSs when generating applications for different target
environments.

298 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Step 5. Allocate the Project Partitioned Data Sets:

Allocating SCLM Partitioned Data Sets: The data set characteristics for the new
types are described in Table 19.

Table 19. SCLM Data Set Attributes for CSP/370AD 4.1/DB2 Types

Type PS or PO RECFM LRECL BLKSIZE.

FLMCOPY PO FB 80 3120

ARCHDEF PO FB 80 3120

oeARCH PO FB 80 3120

oeCLST PO FB 80 3120

oeCOPY PO FB 80 3120

oeDBRM PO FB 80 3120

oeDB2B PO FB 80 3120

oeDB2P PO FB 80 3120

oeFOBJ PO FB 80 3120

oeJCLX PO FB 80 3120

oeLIST PO VBA 255 3120

oeLMAP PO FB 121 2420

oeLOAD PO U 0 6144

oeMFS PO FB 80 3120

oeOBJ PO FB 80 3120

oePCTL PO FB 80 3120

oePRXY PO FB 80 3120

oePOBJ PO VB 80 3120.

oeSRC PO FB 80 3120.

Step 6. Allocate and Create the Control Data Sets: No additional considerations
are required for CSP/370AD support.

*----DEV1 GROUP --
WORK DEV1 PROJECT.DEV1.EZEWORK
MSL DEV1 MSLDEV1 PROJECT.MSLDEV1
*----DEV2 GROUP --
WORK DEV2 PROJECT.DEV2.EZEWORK
MSL DEV2 MSLDEV2 PROJECT.MSLDEV2
*----STG1 GROUP --
WORK STG1 PROJECT.STG1.EZEWORK
MSL STG1 MSLSTG1 PROJECT.MSLSTG1
*----STG2 GROUP --
WORK STG2 PROJECT.STG2.EZEWORK
MSL STG2 MSLSTG2 PROJECT.MSLSTG2
*----TEST GROUP --
WORK TEST PROJECT.TEST.EZEWORK
MSL TEST MSLTEST PROJECT.MSLTEST
*----REL GROUP --
WORK REL PROJECT.REL.EZEWORK
MSL REL MSLREL PROJECT.MSLREL
*----SYSTEM MSL'S ---------------------------------------
LMSL1 LMSL1 PROJECT.COMMON.LMSL1
LMSL2 LMSL2 PROJECT.COMMON.LMSL2

Figure 110. CSP/370AD 4.1 MSL Control Member Example

Chapter 12. Cross System Product Support 299

Step 7. Protect the Project Environment: No additional considerations are
required for CSP/370AD support.

Step 8. Create the Project Definition: You can browse the example project
definition FLM@EXM2, which provides an example of the macros used to support
CSP/370AD.

Specify new types to be supported with the FLMTYPE macro.

Use the COPY macro to include the new language definitions for:

v CSP/370AD 4.1; see Table 20.

v DB2 with CSP/370AD 4.1; see Table 21 on page 301.

v MFS; see Table 22 on page 301.

Table 20. Language Definitions for CSP/370AD 4.1

Member Language
Target
Environment Description

FLM@XMB CSPMB MVSBATCH CSP/370AD 4.1 for MVS/Batch for
Applications and Tables

FLM@XMBB CSPMBB MVSBATCH CSP/370AD 4.1 for MVS/Batch for Map
Groups with Batch Mapping Services
Program

FLM@XMBQ CSPMBQ MVSBATCH CSP/370AD 4.1 for MVS/Batch for
Applications with DB2 preprocessing

FLM@XMC CSPMC MVSCICS CSP/370AD 4.1 for MVS/CICS for
Applications with CICS preprocessing

FLM@XMCM CSPMCM MVSCICS CSP/370AD 4.1 for MVS/CICS for Map
Groups with CICS preprocessing

FLM@XMCQ CSPMCQ MVSCICS CSP/370AD 4.1 for MVS/CICS for
Applications with DB2 and CICS
preprocessing

FLM@XMI CSPMI IMSBMP CSP/370AD 4.1 for IMS/BMP for
Applications and Tables

FLM@XMIB CSPMIB IMSBMP CSP/370AD 4.1 for IMS/BMP for Map
Groups with Batch and MFS Mapping
Services Programs

FLM@XMIM CSPMIM IMSBMP CSP/370AD 4.1 for IMS/BMP for Map
Groups with MFS Mapping Services
Program

FLM@XMIQ CSPMIQ IMSBMP CSP/370AD 4.1 for IMS/BMP for
Applications with DB2 preprocessing

FLM@XMT CSPMT TSO CSP/370AD 4.1 for MVS/TSO for Tables

FLM@XMTM CSPMTM TSO CSP/370AD 4.1 for MVS/TSO for Map
Groups

FLM@XMTQ CSPMTQ TSO CSP/370AD 4.1 for MVS/TSO for
Applications with DB2 preprocessing

FLM@XMV CSPMV IMS/VS CSP/370AD 4.1 for IMS/VS for
Applications and Tables

FLM@XMVM CSPMVM IMS/VS CSP/370AD 4.1 for IMS/VS for Map
Groups with MFS Mapping Services
Program

300 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 20. Language Definitions for CSP/370AD 4.1 (continued)

Member Language
Target
Environment Description

FLM@XMVQ CSPMVQ IMS/VS CSP/370AD 4.1 for IMS/VS for
Applications with DB2 preprocessing

FLM@XOC CSPOC OS2CICS CSP/370Ad 4.1 for CICS OS/2 for
Applications and Tables

FLM@XOCM CSPOCM OS2CICS CSP/370AD 4.1 for CICS OS/2 for Map
Groups

Table 21. Language Definitions for DB2 BIND/FREE for CSP/370AD 4.1

Member Language
Target
Environment Description.

FLM@DMBB DB2MBB MVSBATCH DB2 for MVS/Batch for SCLM Build

FLM@DMBP DB2MBP MVSBATCH DB2 for MVS/Batch for SCLM Promote

FLM@DMCB DB2MCB MVSCICS DB2 for MVS/CICS for SCLM Build

FLM@DMCP DB2MCP MVSCICS DB2 for MVS/CICS for SCLM Promote

FLM@DMIB DB2MIB IMSBMP DB2 for IMS/BMP for SCLM Build

FLM@DMIP DB2MIP IMSBMP DB2 for IMS/BMP for SCLM Promote

FLM@DMTB DB2MTB TSO DB2 for MVS/TSO for SCLM Build

FLM@DMTP DB2MTP TSO DB2 for MVS/TSO for SCLM Promote

FLM@DMVB DB2MVB IMS/VS DB2 for IMS/VS for SCLM Build

FLM@DMVP DB2MVP IMS/VS DB2 for IMS/VS for SCLM Promote

Table 22. Language Definitions for MFS

Member Language
Target
Environment Description

FLM@MVTS MFSVTS IMS/VS IMS/VS invocation of MFSTEST

FLM@MVUT MFSVUT IMS/VS IMS/VS invocation of MFSUTL

Notes:

1. FLM@MVTS and FLM@MVUT are provided as an alternative to the CSP
preparation JCL for MFS utilities. These language definitions are not intended
to provided a complete solution for the use of IMS with SCLM.

2. For the IMS/BMP environment, you can use the MFS language definitions for
IMS/VS, provided that the REFERRAL and FORMAT data sets to be used are
the same. Otherwise, you need to create new language definitions for
IMS/BMP that would be based on the existing definitions for IMS/VS.

3. For more information on IMS MFS, see IMS/VS Version 2, Message Format
Service, User’s Guide and IMS/ESA Version 3 Utilities Reference

4. In the IMS environments, language definitions for CSP/370AD 4.1 have a
default language for the MFS control blocks ’MFSVUT’. This control block
invokes the FLM@MVUT language definition. The default must be set to
‘MFSVTS’ if you want to invoke FLM@MVTS.

5. The outputs for language definitions for MFS are stored in IMS data sets that
are not under SCLM control, and the xxMFS member in the SCLM hierarchy
does not keep track of these outputs in the build map. This means that when
the xxMFS member is promoted in the SCLM hierarchy, there is no
corresponding promotion of the members in the IMS data sets.

Chapter 12. Cross System Product Support 301

Define the Language Definitions: Avoid modifying the language definitions for
CSP/370AD 4.1. Some of the exceptions to this recommendation are:
v Modify the RECNUM for SYSPRINT and EZEPRINT to fit your needs.
v Modify data sets specified on FLMSYSLB and FLMCPYLB to use the actual data

set names used in your installation.
v Modify the BUFSIZE parameter for the FLMLANGL macros in order to reflect

the maximum number of associates in an application.
v If you want to store additional CSP/370AD outputs such as External Source

Format (ESF) and preparation JCL (JCLP), you need to provide an FLMALLOC
for each new output.

v Modify the RECNUMs for the ddnames that will contain the output members
generated by CSP/370AD, such as EZESRC, to fit your needs. If the RECNUM is
too small, the build will fail, the following messages appear, and the system will
hang:
IEC031I D37-04,...
IEC031I ...
IBM841I 'ONCODE'=1040

DATA SET OPEN FOR OUTPUT HAS USED ALL AVAILABLE SPACE
AT OFFSET +0008DA IN PROCEDURE WITH ENTRY _putblk

This error occurs during the CSP/370AD generation process; for more
information, refer to IBM SAA Cross System Product: Messages, Codes and Problem
Diagnosis, SH23-6523.

v The IEFBR14 translator is used in the language definitions as a place-holder for
those build steps that are not appropriate for a particular language definition;
for example, the IEFBR14 translator is used as a place-holder for Step 2 in
FLM@XMT, because there is no need to invoke the DB2 preprocessor in that
particular language definition. Place-holders are used in order to have, as far as
possible, the same number of build steps in every language definition.
If you do not want to invoke the IEFBR14 translator, you can delete it from the
language definitions.

v If you do not want to store compiler listings or linkmaps, find the FLMALLOC
macro for the output and delete the DFLTTYPE parameter from that macro, then
remove all references to the output from the architecture definitions. For more
information, refer to ISPF Software Configuration and Library Manager (SCLM)
Reference

If you have a different naming convention for the types, you may need to do the
following:
v Modify the DFLTTYP values on the FLMALLOC macros to reflect the new

naming convention.
v Modify the DBRMTYPE values in the OPTIONS parameter on the FLMTRNSL

macros in the FLM@Dxxx language definitions to reflect the new naming
convention.

The language definitions contain specific customization notes that you should read
before you modify the language definitions. These include:
v The options for the CICS preprocessing step, that depend on the CICS version

that is used.
v The options for the COBOL compilation step, that depend on the COBOL

compiler that is used.

302 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The language definition for the Linkage Editor provided by SCLM does not
contain the proper concatenation of libraries to resolve the external references for
the MVS CICS environment. So, to link-edit object modules for MVS CICS, you
must do one of the following:
v Create a new language definition for the linkage editor that contains the proper

concatenation of libraries. You can use the existing language definition
FLM@L370 as a basis, and modify the FLMALLOC macros with
DDNAME=SYSLIB in order to reflect the proper concatenation of libraries for
MVS CICS. For example, you can create the new language definition FLM@LCIC
with an FLMLANGL macro that has a parameter LANG=LKEDCICS.
Add an LKED statement in every LEC architecture definition for MVS CICS.
This overrides the default language definition for the linkage editor with the one
that is tailored for MVS CICS (for example, LKED LKEDCICS).

v Modify the concatenation sequence on the FLMALLOC macros with
DDNAME=SYSLIB in language definition FLM@L370. One precaution with this
method is that the concatenation of libraries for MVS CICS might be different
than library concatenation in other environments (such as MVS/TSO); the
linking of these modules might fail due to an improper concatenation of
libraries.

Unique IMS REFERRAL and FORMAT data sets can be specified for each SCLM
group. This will assist in preventing the build outputs from one group overwriting
the build outputs from another group. Additional details can be found in the
prologues of FLM@MVUT and FLM@MVTS.

Step 9. Assemble and Link the Project Definition: Reassemble and relink every
project definition that includes new data types and language definitions.

Miscellaneous: The following activities do not fit into any of the preceeding steps
but must be performed:
v Allocate the CSP/370AD MSLs and work data sets that are referenced in the

MSL Control Member. (Refer to IBM SAA Cross System Product: Administering on
MVS for more information.)

v Add CSP/370AD allocations to the STEPLIB in the FLMLIBS skeleton if you are
going to run in batch.

v SCLM invokes the CSP/370AD GENERATE command with the parameter
BATCH(N). To use this parameter, run the EZECSPGN CLIST provided by
CSP/370AD before entering SCLM. Do not use SAVE(YES) on the GENERATE
command. It updates the time and date stamp, causing SCLM to find a time and
date mismatch.

v Allocate EZEPRINT or include it as an FLMALLOC in the language definitions.

Overview of the Processing in the Language Definitions

Knowledge of the processing for the generated COBOL source is imbedded in the
language definitions provided by SCLM. These language definitions are
functionally equivalent to the CSP/370AD preparation JCL that could be created
during a CSP/370AD generation. This section describes the general processing that
takes place. For more information, refer to ISPF Software Configuration and Library
Manager (SCLM) Developer’s and Project Manager’s Guide

Processing a Generic Language Definition for CSP/370AD 4.1: Following is the
SCLM processing of a generic language definition for the support of CSP/370AD
4.1. It shows the order of the translators that are involved with the processing of

Chapter 12. Cross System Product Support 303

SCLM CSP/370AD proxy members for CSP/370AD 4.1. The language definition
contains the sections in the following descriptions.

1. FLMLANGL LANG=language
language is one of the languages listed in Table 20 on page 300.

2. CSP/370AD VERIFY translator (FLMTCVER)
During the verification stage, SCLM Build or SCLM Promote checks the
date and time for every entry in the Build Map of the member to be built
or promoted. This means that if a proxy does not have a build map (as in
the case of the first build), then this stage is not performed on that proxy.

SCLM Build and SCLM Promote will pass to this translator the list of the
CSP/370AD members that need to be verified.

The Verify translator will do the following:
v Prepare a file with CSP/370AD batch commands: for each entry in the

build map, use a CSP/370AD command to get the date and time.
v Invoke the EZE CLIST provided by CSP/370AD, specifying

CMDIN(FLMBATF) as the file with the CSP/370AD batch commands,
and CMDOUT(FLMOUTF) as the file where CSP/370AD will place
messages.

v Pass back to SCLM Build and SCLM Promote the list of CSP/370AD
members with the date and time, as shown in the output of the
CSP/370AD LIST command (stored in the file FLMNLIST). During
SCLM Promote only one batch command file is sent to CSP/370AD for
all the CSP/370AD proxy members involved in the promote. During
SCLM Build one batch command file is sent to CSP/370AD for every
language involved in the build.

3. BUILD translators
The Build translators are described in the following section.

CSP/370AD LIST & GEN translator (FLMTCLGT)
This Build translator invokes CSP/370AD to generate an
application, a table, or a map group; the outputs from the
generation process will be stored in SCLM-controlled data sets.
This translator also gets the list of associates for the member being
built.

The Build translator will do the following:
v Read the proxy file member in order to get any EZE CLIST

parameters described in the EZE tag, and any CSP/370AD
commands described in the GROUP and BUILD tags.

v Invoke the EZE CLIST provided by CSP/370AD, specifying
CMDIN(FLMBATF) as the file with the CSP/370AD batch
commands, and CMDOUT(FLMOUTF) as the file where
CSP/370AD will place messages. Also, the parameters in the
EZE tags will be included in the invocation.
The FLMBATF will contain:
– A CSP/370AD command to get the list of associates for the

member being built.
– The contents of the GROUP and BUILD tags, which must

include GENERATE MEMBER(name). Do not use SAVE(YES)
on the GENERATE command. It updates the time and date

304 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

stamp, causing SCLM to find a time and date mismatch. The
translator will append the following parameters to the
GENERATE command:
- SYSTEM(system), as shown in the parameter SYSTEM in

the OPTIONS field of the FLMTRNSL macro of the
language definition

- MAPS(NONE)
- TABLES(NONE)
- BATCH(N).

The CSP/370AD GENERATE command will produce the COBOL
source code and the Parts Control File, and any other generated
members, which will be stored as noneditable members in
SCLM-controlled data sets.

DB2 Preprocessing (DSNHPC)
This translator invokes the DB2 preprocessor in order to resolve
any DB2 commands included in the COBOL source code.

In order to keep consistent language definitions, this step will be
present in all the CSP/370AD language definitions. If there is no
need for the preprocessor, the COMPILE field will be IEFBR14, or
you might delete the entire step from the language definition.

Note: IEFBR14 is a “no-operation” program that sets a return code
of 0 in register 15 and returns control to SCLM.

CICS Preprocessing (DFHECP1$)
This translator invokes the CICS preprocessor in order to resolve
any CICS commands included in the COBOL source code.

In order to keep consistent language definitions, this step will be
present in all the CSP/370AD language definitions. If there is no
need for the preprocessor, the COMPILE field will be IEFBR14, or
you might delete the entire step from the language definition.

COBOL Compiler (IGYCRCTL)
This translator invokes the COBOL compiler in order to produce
object code.

4. COPY translator (FLMTCPC)
SCLM Promote passes to this translator the list of the CSP/370AD
members that need to be copied from one MSL to another.

The Copy translator will do the following:
v Prepare a file with a CSP/370AD batch command to copy members from

one MSL to another MSL.
v Invoke the EZE CLIST provided by CSP/370AD, specifying

CMDIN(FLMBATF) as the file with the CSP/370AD batch command,
and CMDOUT(FLMOUTF) as the file where CSP/370AD will place
messages.

5. PURGE translator (FLMTCPP)
SCLM Promote passes to the Purge translator (by means of $list_info) the
list of the CSP/370AD members that need to be deleted from an MSL.

The Purge translator will do the following:
v Prepare a file with a CSP/370AD batch command to delete members

from one MSL.

Chapter 12. Cross System Product Support 305

v Invoke the EZE CLIST provided by CSP/370AD, specifying
CMDIN(FLMBATF) as the file with the CSP/370AD batch command,
and CMDOUT(FLMOUTF) as the file where CSP/370AD will place
messages.

Processing a Generic Language Definition to Process DB2 CLISTs during Build:
The following is a generic language definition that shows the contents and order of
the translators that are involved with the processing of DB2 CLIST members
during SCLM Build.

FLMLANGL LANG=language
language is one of the languages listed for DB2 CLISTs in Table 21 on
page 301.

PARSE translator (FLMLSS)
During the parse stage, SCLM Edit identifies the input dependencies for
the DB2 CLIST. The input dependencies are identified as follows:

/* %INCLUDE dbrm-name */

BUILD translator (FLMCSPDB)
During SCLM Build, the DB2 CLIST indicates which are the DBRMs for
the DB2 BIND in order to produce a DB2 Plan.

The translator also creates a copy of the DB2 CLIST with a different
language to be used during the promotion.

Processing a Generic Language Definition to Process DB2 CLISTs during
Promote: The following is a generic language definition that shows the contents
and order of the translators that are involved with the processing of DB2 CLIST
members during SCLM Promote.

FLMLANGL LANG=language
language is one of the languages listed for DB2 CLISTs in the table shown
in Table 21 on page 301.

PROMOTE translators
The PROMOTE translators are described as follows.

COPY Translator, ’DB2 PROM BIND’, (FLMCSPDB)
This Copy translator will bind the DBRMs into the DB2 Plan at the
TO group of the promotion.

PURGE Translator, ’DB2 PROM FREE’, (FLMCSPDB)
This Purge translator will free the DB2 Plan from the FROM group
of the promotion.

Relationship Between Language Definitions and CSP/370AD
Templates

Table 23 on page 307 shows the relationship between the preparation JCL templates
and procedure templates provided by CSP/370AD, and the language definitions
for CSP/370AD provided with SCLM. The prologues of the language definitions
for CSP/370AD 4.1 contain a section that shows this relationship.

Note: This information is accurate as of the time of the publication of this manual.
In order to determine which INCLUDEs are actually being used, check the
templates for the preparation JCL provided by CSP/370AD. These templates
might have been customized during the CSP/370AD installation process.
Furthermore, the language definition for the Link-Editor needs to include
the appropriate load libraries.

306 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

For more information on the CSP/370AD templates refer to IBM SAA Cross System
Product Generating Applications V4R1.

Following is the description of the columns in the Table 23.
v The column labeled Language Definition indicates the name of the language

definition for CSP/370AD, which is provided by SCLM.
v The column labeled Member Type indicates whether the CSP/370AD member is

an application, table, or map group.
v The column labeled Preparation JCL Template indicates the name of the

preparation JCL template (provided by CSP/370AD in the data set
CSP410.SEZESAMP) that served as the basis for the sequence of translators to
use and their options.

v The column labeled Procedure Template indicates the name of the procedure
template provided by CSP/370RS in the data set CRS210.SELASAMP. The
procedure template served as the basis for the CMD INCLUDEs required in the
LEC architecture definitions used to obtain the load modules for the COBOL
source generated by CSP/370AD.

v The column labeled BIND Template indicates the name of the BIND template
provided by CSP/370AD in the data set CSP410.SEZESAMP. The BIND template
could serve as the basis for any needed parameters for the BIND operation
specified in the DB2 CLIST member required by SCLM.

v The column labeled Link-Edit Parameters indicates the parameters used in the
preparation JCL template provided by CSP/370AD. This column shows the
actual link-edit commands used in the procedure templates.

Table 23. Relationship between Language Definitions from SCLM and Templates from CSP/370AD 4.1

Language
Definition Member Type

Preparation
JCL Template

Procedure
Template

BIND
Template Link-Edit Parameters

FLM@XMB Application EZEMCL ELACL CHANGE ELAAPPL(│EZEMBR│)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SELALMD(ELARSINT)
ENTRY │EZEENTRY│
NAME │EZEMBR│(R)

FLM@XMB Table EZEACL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMBB Map Group
(P1)

EZEACL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMBQ Application EZEMPCLB ELAPCLB EZEBINDN CHANGE ELAAPPL(│EZEMBR│)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SELALMD(ELARSINT)
INCLUDE SELALMD(ELASTB07)
INCLUDE SYSLIB(DSNELI)
ENTRY │EZEENTRY│
NAME │EZEMBR│(R)

FLM@XMBQ Application
(DL/I)

EZEDPCLB ELAPCLB EZEBINDA CHANGE ELAAPPL(│EZEMBR│)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SELALMD(ELARSINT)
ENTRY │EZEENTRY│
NAME │EZEMBR│(R)

FLM@XMC Application EZECCL ELATCL INCLUDE SELALMD(ELARSINC)
INCLUDE SYSLIB(DFHEAI)
NAME │EZEMBR│(R)

Chapter 12. Cross System Product Support 307

Table 23. Relationship between Language Definitions from SCLM and Templates from CSP/370AD 4.1 (continued)

Language
Definition Member Type

Preparation
JCL Template

Procedure
Template

BIND
Template Link-Edit Parameters

FLM@XMCM Map Group EZEACL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMCM Map Group
(FM)

EZECMGL ELAL NAME │EZEMBR│(R)

FLM@XMCQ Application EZECPCLB ELAPTCLB EZEBINDA INCLUDE SELALMD(ELARSINC)
INCLUDE SYSLIB(DFHEAI,DSNCLI)
NAME │EZEMBR│(R)

FLM@XMI Application EZEBCL ELACL CHANGE ELAAPPL(│EZEMBR│)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SELALMD(ELARSINT)
ENTRY │EZEENTRY│
NAME │EZEMBR│(R)

FLM@XMI Table EZEACL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMIB Map Group EZEACL
EZEMFSCL

ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMIB Map Group
(P1)

EZEACL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMIM Map Group EZEMFSCL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMIM MFS EZEMFSCL none.

FLM@XMIQ Application EZEBPCLB ELAPCLB EZEBINDA CHANGE ELAAPPL(│EZEMBR│)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SELALMD(ELARSINT)
ENTRY │EZEENTRY│
NAME │EZEMBR│(R)

FLM@XMT Table EZEACL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMTM Map Group EZEACL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMTM Map Group
(FM)

EZECMGL ELAL NAME │EZEMBR│(R)

FLM@XMTQ Application EZETPCLB ELAPCLB EZEBINDN CHANGE ELAAPPL(│EZEMBR│)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SELALMD(ELARSINT)
INCLUDE SELALMD(ELASTB07)
INCLUDE SYSLIB(DSNELI)
ENTRY │EZEENTRY│
NAME │EZEMBR│(R)

FLM@XMV Application EZEICL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMV Table EZEACL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMVM Map Group EZEMFSCL ELACL INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

MFS EZEMFSCL none.

308 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 23. Relationship between Language Definitions from SCLM and Templates from CSP/370AD 4.1 (continued)

Language
Definition Member Type

Preparation
JCL Template

Procedure
Template

BIND
Template Link-Edit Parameters

FLM@XMVQ Application
(DB2 Work
Database)

EZEICLB ELACLB EZEBINDR INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMVQ Application
(DB2 in
Application;
DB2 Work
Database)

EZEIPCLB ELAPCLB EZEBIND INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XMVQ Application
(DB2 in
Application)

EZEIPCLB ELAPCLB EZEBINDA INCLUDE SELALMD(ELARSINT)
NAME │EZEMBR│(R)

FLM@XOC Application None

FLM@XOC Table None

FLM@XOCM Map Group None

Information For The Developer

Getting Started

After the project has been defined, the programmers on the project should perform
the following steps:

Step 1. Create CSP/370AD Proxy Members: You must create at least one
CSP/370AD proxy for each application, map group, or table. You define the
CSP/370AD application build and promote processes by customizing the
CSP/370AD proxy member. SCLM tracks the proxy and keeps accounting
information. Additional proxies can be created for each application, map group, or
table if they must be generated for different target systems or with different
options.

CSP/370AD Proxy Member: The CSP/370AD proxy contains CSP/370AD
commands, parameters, and SCLM tags to group these CSP/370AD parameters.
The translators invoked during Build and Promote use the contents of the
CSP/370AD proxy member to pass the appropriate commands and parameters to
CSP/370AD. These translators invoke CSP/370AD using the EZE CLIST that is
provided by CSP/370AD. This CLIST is invoked with the following parameters:
MSL, ROMSL, CMDIN, and CMDOUT.

All commands in a tag section are passed directly to CSP/370AD; you can include
any appropriate parameter or command in a tag section.

The MEMBER(cps_member_name) parameter is required, and it is scanned
specifically in the CSP/370AD proxy member, inside the :BUILD tag pair.

The following GENERATE parameters are ignored if they appear in the
CSP/370AD proxy. If you include them in the file, SCLM issues a warning
message indicating that the parameters were ignored because SCLM provides fixed
values for them:

SYSTEM:
SCLM uses the target system specified in the SYSTEM field in the
OPTIONS parameter of the FLMTRNSL macro in the language definition

Chapter 12. Cross System Product Support 309

associated with the CSP/370AD proxy member. For example, if the
CSP/370AD proxy has a language of CSPMT, which is associated with
language definition FLM@XMT, the SYSTEM field has a value of TSO. This
value is used.

MAPS:
SCLM always submits MAPS(NONE) to indicate that no maps are
generated during application generation. This parameter has no effect
during generation of maps or tables.

TABLES:
SCLM always submits TABLES(NONE) to indicate that no tables are
generated during application generation. This parameter has no effect
during generation of maps or tables.

BATCH:
SCLM always submits BATCH(N) to indicate that CSP/370AD GENERATE
should be done in the same address space as SCLM.

Some tag sections and commands are optional. If they are not specified,
CSP/370AD uses the default CSP/370AD command options. For more information,
refer to IBM SAA Cross System Product Generating Applications V4R1

Any characters outside of the tag section are considered to be comments. Start a
comment line with an asterisk (*) in the first column, because this is the convention
used in both the MSL Control File and the architecture definitions.

CSP commands must terminate with a semicolon. The parameters for the EZE
CLIST provided by CSP/370AD should not be terminated with a semicolon. To
make the proxy easier to read, do not combine tags with commands or parameters
on the same line.

The format for the CSP/370AD proxy is shown in Figure 111 on page 311. This
diagram uses the following notation conventions to describe the format:

Uppercase Uppercase commands or parameters must be spelled out as shown
(in either uppercase or lowercase).

Lowercase Lowercase parameters are variables; substitute your own values.

Underscore Underscored parameters are the system defaults.

Brackets ([]) Parameters in brackets are optional.

Braces ({ }) Braces show two or more parameters from which you must select
one.

310 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Restrictions:

v Only columns 1 through 72 are read and processed. Data in columns 73 through
80 is ignored.

v The tags, commands and parameters are not case-sensitive.
v The proxy tags must begin in column 1.
v Each beginning tag symbol has a corresponding end tag symbol.
v Tags cannot be nested.
v The CSP/370AD batch commands must be terminated with a semicolon.
v The EZE parameters should not be terminated with a semicolon.
v Do not place proxy tags and CSP/370AD commands or parameters on the same

line.

Field Descriptions:

:EZE group-name.

:EEZE.
The EZE section allows you to pass EZE parameters to the EZE CLIST.

The group-name parameter allows you to specify EZE parameters that can
vary from group to group in SCLM. If a group name is not specified with the
EZE tag, the EZE parameters apply to all groups.

Refer to IBM SAA Cross System Product: Administering on MVS for a list of the
parameters for the EZE CLIST. These parameters are appended to the
parameter list that the CSP/370AD translators use to invoke the EZE CLIST
provided by CSP/370AD.

The following EZE parameters are used by the CSP/370AD translators, and
they should not be specified in the CSP/370AD proxy member to avoid
unpredictable results from CSP/370AD:
v MSL
v ROMSL
v CMDIN
v CMDOUT

If you enter an invalid parameter for the EZE CLIST, the following error
message appear when the EZE CLIST is executed:
IKJ56712I INVALID KEYWORD, xxxxxxxx
IKJ56703A REENTER THIS OPERAND -

[:EZE.[group-name].]
[DSYS(db2-system)]

[:EEZE.]

[:GROUP [group-name].]
[MSL ROMSL(common-msl,dev1-msl,test-msl,prod-msl);]

[:EGROUP.]

:BUILD [APPL│TBLE│MAPG].

GENERATE MEMBER(csp/370AD_member_name)
(any other appropriate generation parameters);

:EBUILD.

Figure 111. CSP/370AD 4.1 Proxy Format

Chapter 12. Cross System Product Support 311

:GROUP group-name.

:EGROUP.
The GROUP tag allows you to specify CSP/370AD commands that can vary
from group to group. If a group name is not specified with the GROUP tag,
the GROUP command applies to all groups; in this case, it is better to move
the command into the BUILD section. During the generate step, commands in
the GROUP tag are executed before commands in the BUILD tag. Although
these tags are available, they should be used carefully, because the generated
CSP/370AD member can become obsolete after a promote; it is then necessary
to build after the promote.

Note: The group tag should be used with care. The group tag can cause the
build outputs for an application to vary at different groups.

Refer to IBM SAA Cross System Product Commands and Utilities V4R1 for a list of
the CSP/370AD commands.

:BUILD[APPL│TBLE│MAPG].

:EBUILD.
This is the only required section. The BUILD section allows you to specify the
name of the application, table, or map group. You must specify the kind of
CSP/370AD member to generate. The default is APPL, which is the
abbreviation used in CSP/370AD to specify a CSP/370AD application. The
TBLE keyword refers to a CSP/370AD table, and the MAPG keyword refers to
a CSP/370AD map group. If you do not specify the kind of member to
generate, or if you specify a value that is not one of the three valid choices
(APPL, TBLE, or MAPG), the APPL value is used. APPL and TBLE are handled
in the same way.

The commands in this section are passed to CSP/370AD in the order they
appear.

The MEMBER parameter is required for the GENERATE command. The value
of the MEMBER parameter is the CSP/370AD member name for the
application, table, or map group.

Refer to IBM SAA Cross System Product Commands and Utilities V4R1 for a list of
the CSP/370AD commands.

CSP/370AD Proxy Examples: The first example shows a simple CSP/370AD proxy.

Figure 113 on page 313 shows a CSP/370AD proxy with the DSYS parameter
specified; this is needed when SQLVALID(Y) is specified in the GENERATE
command.

*
* Build the EX00A Application for TSO
*
:BUILD APPL.

GENERATE MEMBER(EX10A);
:EBUILD.

Figure 112. CSP/370AD Proxy Example

312 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Figure 114 shows how to have a library MSL as the first MSL when the LIB1ST
option on the Verify and Build translators is set to its default value, N. If
LIB1ST=Y, however, you would not need to use these group tags.

Notes:

1. You can specify the LIB1ST=Y parameter for the OPTIONS of both the Verify
and the Build translators for CSP/370AD to tell SCLM to automatically
concatenate the library MSLs first. If you do this, you do not need to use the
GROUP tags as shown in the figure.

2. The group tag should be used with care. This tag can cause the build outputs
for an application to vary at different groups.

Figure 115 on page 314 builds an application for German.

*
* Build the EX10A Application for TSO
*
:EZE.

DSYS(DB2C)
:EEZE.
:BUILD APPL.

GENERATE MEMBER(EX10A) SQLVALID(Y);
:EBUILD.

Figure 113. CSP/370AD Proxy Example

*
* This example uses the library MSL first in the concatenation
*
:GROUP DEV1.

MSL ROMSL (LMSL1,DEV1MSL,TESTMSL,PRODMSL);
:EGROUP.
:GROUP DEV2.

MSL ROMSL (LMSL1,DEV2MSL,TESTMSL,PRODMSL);
:EGROUP.
:GROUP TEST.

MSL ROMSL (LMSL1,TESTMSL,PRODMSL);
:EGROUP.
:GROUP PROD.

MSL ROMSL (LMSL1,PRODMSL);
:EGROUP.

:BUILD APPL.
GENERATE MEMBER(EX00A) PREPJCL(N);

:EBUILD.

Figure 114. Using a Common MSL As the First MSL for the Generate

Chapter 12. Cross System Product Support 313

How to specify CSP/370AD SYMPARM Commands in CSP/370AD Proxy Members:
The CSP/370AD SYMPARM command extends the capability for customizing the
model JCL and CLIST members used in building the JCL for submitting jobs and
in building JCL and CLISTs for programs. You can assign values to
installation-defined symbolic parameters using the SYMPARM command. For more
information, refer to IBM SAA Cross System Product Commands and Utilities V4R1

The following is an example of how to specify the CSP/370AD SYMPARM
command in a CSP/370AD proxy member:
v The appropriate templates in the CSP/370AD ddname EZESAMP must have the

installation-defined symbolic parameters. In this example, the EZETSO template
would contain the following installation-defined symbolic parameters: PROJ,
GROUP, TYPE. These parameters could be used as follows:
CALL '│PROJ│.│GROUP│.│TYPE│(│EZEMBR│)'

Note: The names of the installation-defined symbolic parameters should not
begin with ’EZE’, because CSP/370AD uses symbolic parameters that
start with ’EZE’.

v The CSP/370AD proxy must include the calls to the CSP/370AD SYMPARM
commands with the actual values used for each installation-defined symbolic
parameter:

Step 2. Create DB2 CLIST Members: For more information on DB2, see
Chapter 13. SCLM Support for DB2, General Information. For an example of a DB2
CLIST member for CSP/370AD 4.1, see “Examples of DB2 CLIST members for
CSP/370AD 4.1” on page 343

Step 3. Determine Additional Statements for the Link-Edit Step: If there is a
tailored language definition for the link-edit step for MVS/CICS, add an LKED
statement with the name of the appropriate language. For example, if the language
LKEDCICS is used in the FLMLANGL macro of this tailored language definition,
the LKED statement looks like this: LKED LKEDCICS.

*
* Generate application EX00A for German
*
:EZE.

NLS(DEU)
:EEZE.
:BUILD APPL.

GENERATE MEMBER(EX00A);
:EBUILD.

Figure 115. CSP/370AD Proxy Example for National Language Support

*
* Build the EX00A Application for TSO with SYMPARM commands
*
:BUILD APPL.

SYMPARM SYMBOL(XYZUSR) VALUE('PREFIX');
SYMPARM SYMBOL(XYZENV) VALUE('TSO');
SYMPARM SYMBOL(XYZTYPE) VALUE('LOAD');
GENERATE MEMBER(EX00A);

:EBUILD.

Figure 116. CSP/370AD Proxy Example with CSP/370AD SYMPARM Commands

314 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The LEC architecture definitions must contain appropriate CMD INCLUDE and
PARM statements that are based on the templates provided by CSP/370AD for the
preparation JCL.

Table 24 shows the CMD INCLUDE SYSLIB(member) statements to be included in
the LEC architecture definition members for the CSP/370AD language definitions
provided with SCLM. The prologues of the language definitions for CSP/370AD
4.1 contain a section that shows the appropriate statements to be used.

Note: This information is accurate as of the time of the publication of this manual.
To determine which INCLUDEs are being used, check the templates for the
preparation JCL provided by CSP/370AD. These templates might have been
customized during the CSP/370AD installation process. Furthermore, the
language definition for the Link-Editor needs to include the appropriate load
libraries.

For more information on the CSP/370AD templates refer to IBM SAA Cross System
Product Generating Applications V4R1.

Table 24. CMD INCLUDEs for LEC Architecture Definitions for CSP/370AD 4.1
Language Member Type CMD INCLUDEs
CSPMB Application CMD INCLUDE SYSLIB(ELARMAIN)

CMD INCLUDE SYSLIB(ELARSINT)
CSPMB Table CMD INCLUDE SYSLIB(ELARSINT)
CSPMBB Map Group (P1) CMD INCLUDE SYSLIB(ELARSINT)
CSPMBQ Application CMD INCLUDE SYSLIB(ELARMAIN)

CMD INCLUDE SYSLIB(ELARSINT)
CMD INCLUDE SYSLIB(ELASTB07)
CMD INCLUDE SYSLIB(DSNELI)

CSPMBQ Application
(DL/I)

CMD INCLUDE SYSLIB(ELARMAIN)
CMD INCLUDE SYSLIB(ELARSINT)

CSPMC Application CMD INCLUDE SYSLIB(ELARSINC)
CMD INCLUDE SYSLIB(DFHEAI)

CSPMC Table CMD INCLUDE SYSLIB(ELARSINT)
CSPMCM Map Group CMD INCLUDE SYSLIB(ELARSINT)
CSPMCQ Application CMD INCLUDE SYSLIB(ELARSINC)

CMD INCLUDE SYSLIB(DFHEAI,DSNCLI)
CSPMI Application CMD INCLUDE SYSLIB(ELARMAIN)

CMD INCLUDE SYSLIB(ELARSINT)
CSPMI Table CMD INCLUDE SYSLIB(ELARSINT)
CSPMIB Map Group CMD INCLUDE SYSLIB(ELARSINT)
CSPMIB Map Group (P1) CMD INCLUDE SYSLIB(ELARSINT)
CSPMIM Map Group CMD INCLUDE SYSLIB(ELARSINT)
CSPMIQ Application CMD INCLUDE SYSLIB(ELARMAIN)

CMD INCLUDE SYSLIB(ELARSINT)
CSPMT Application CMD INCLUDE SYSLIB(ELARMAIN)

CMD INCLUDE SYSLIB(ELARSINT)
CSPMT Table CMD INCLUDE SYSLIB(ELARSINT)
CSPMTM Map Group CMD INCLUDE SYSLIB(ELARSINT)
CSPMTQ Application CMD INCLUDE SYSLIB(ELARMAIN)

CMD INCLUDE SYSLIB(ELARSINT)
CMD INCLUDE SYSLIB(ELASTB07)
CMD INCLUDE SYSLIB(DSNELI)

Chapter 12. Cross System Product Support 315

Table 24. CMD INCLUDEs for LEC Architecture Definitions for CSP/370AD 4.1 (continued)
Language Member Type CMD INCLUDEs
CSPMV Application CMD INCLUDE SYSLIB(ELARSINT)
CSPMV Table CMD INCLUDE SYSLIB(ELARSINT)
CSPMVM Map Group CMD INCLUDE SYSLIB(ELARSINT)
CSPMVQ Application CMD INCLUDE SYSLIB(ELARSINT)
CSPOC Application None
CSPOC Table None
CSPOCM Map Group None

The following PARMS statement must be included in the LEC architecture
definition members for all the language definitions for CSP/370AD 4.1 (except for
FLM@XOC and FLM@XOCM).
PARM RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)

The following is an example of a LEC architecture definition member for an
application in the MVS/CICS target environment with a language value of
CSPMCQ:
LOAD EX10A MCLOAD
LMAP EX10A MCLMAP
INCLD EX10A MCPRXY
CMD INCLUDE SYSLIB(ELARSINC)
CMD INCLUDE SYSLIB(DFHEAI,DSNCLI)
PARM RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)

The LEC architecture definition member for the same application in the MVS/TSO
target environment contains these statements with a language value of CSPMTQ:
LOAD EX10A MTLOAD
LMAP EX10A MTLMAP
INCLD EX10A MTPRXY
CMD INCLUDE SYSLIB(ELARMAIN)
CMD INCLUDE SYSLIB(ELARSINT)
CMD INCLUDE SYSLIB(ELASTB07)
CMD INCLUDE SYSLIB(DSNELI)
PARM RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)

Step 4. Create Architecture Definitions: For CSP/370AD applications without
DB2 involvement, a single generic architecture definition is sufficient for each
application, table, and map group. For CSP/370AD applications with DB2,
additional architecture definitions can bind or free the DB2 application plans.

Table 25 describes the keywords used in the KEYREF parameter of the FLMALLOC
macros in the language definitions for CSP/370AD 4.1 provided with SCLM; these
keywords are also used in the following tables. The CSP/370AD DDNAME
column indicates the ddname used by CSP/370AD 4.1 during the generation
process.

Table 25. KEYREF Keywords for CSP/370AD 4.1 Language Definitions
Keyword CSP/370AD DDNAME Description
SINC none Source for the CSP/370AD

proxy.
OBJ none Object code for application,

table, online mapping
services program, or MFS
mapping services program.

LIST none Listing from the COBOL
compiler.

316 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 25. KEYREF Keywords for CSP/370AD 4.1 Language Definitions (continued)
Keyword CSP/370AD DDNAME Description
OUT1 EZESRC COBOL source code for

application, table, online
mapping services program,
or MFS mapping services
program.

OUT2 EZEPCTL Parts Control File.
OUT3 EZEFOBJ Map Group Format Module

for MVS/TSO or MVS/CICS
(member name with suffix
FM).

OUT3 EZEPOBJ Map Group Format Module
for CICS OS/2.* (member
name with suffix FM).

OUT4 EZEJCLX Sample Execution JCL for
MVS/Batch or IMS/BMP.

OUT4 EZECLST Sample Execution CLIST for
MVS/TSO.

OUT5 none Not used.
OUT6 none DBRM.
OUT7 EZESRC COBOL source code for Batch

mapping services program
(member name with suffix
P1).

OUT8 none Object code for Batch
mapping services program
(member name with suffix
P1).

OUT9 EZEMFS MFS Control Blocks.
OUT0 EZECOPY COBOL Copybook.

Table 26 shows the generated outputs from an SCLM Build of a CSP/370AD proxy
for the language definitions for MVS/Batch provided with SCLM. The Keyword
column indicates the keywords used in the build map to identify the kinds of
members to be stored in SCLM-controlled PDSs. The SINC keyword identifies the
CSP/370AD proxy member, not a generated output.

Table 26. Generated Outputs from an SCLM Build of a CSP/370AD Proxy for MVS/Batch
Keyword FLM@XMB FLM@XMBB FLM@XMBQ
SINC X X X
OBJ X X
LIST X X X
OUT1 X X
OUT2 X X X
OUT3
OUT4 X X
OUT5
OUT6 X
OUT7 X
OUT8 X
OUT9
OUT0

Table 27 on page 318 shows the generated outputs from an SCLM Build of a
CSP/370AD proxy for the language definitions for MVS/CICS provided with
SCLM. The Keyword column indicates the keyword used in the build map to

Chapter 12. Cross System Product Support 317

identify the kinds of members to be stored in SCLM-controlled PDSs. The SINC
keyword identifies the CSP/370AD proxy member, not a generated output.

Table 27. Generated Outputs from an SCLM Build of a CSP/370AD Proxy for MVS/CICS
Keyword FLM@XMC FLM@XMCM FLM@XMCQ
SINC X X X
OBJ X X X
LIST X X X
OUT1 X X X
OUT2 X X X
OUT3 X
OUT4
OUT5
OUT6 X
OUT7
OUT8
OUT9
OUT0

Table 28 shows the generated outputs from an SCLM Build of a CSP/370AD proxy
for the language definitions for IMS/BMP provided with SCLM. The Keyword
column indicates the keyword used in the build map to identify the kinds of
members to be stored in SCLM-controlled PDSs. The SINC keyword identifies the
CSP/370AD proxy member, not a generated output.

Table 28. Generated Outputs from an SCLM Build of a CSP/370AD Proxy for IMS/BMP
Keyword FLM@XMI FLM@XMIB FLM@XMIM FLM@XMIQ
SINC X X X X
OBJ X X X X
LIST X X X X
OUT1 X X X X
OUT2 X X X X
OUT3
OUT4 X X
OUT5
OUT6 X
OUT7 X
OUT8 X
OUT9 X X
OUT0 X X

Table 29 shows the generated outputs from an SCLM Build of a CSP/370AD proxy
for the language definitions for IMS/VS provided with SCLM. The ’Keyword’
column indicates the keyword used in the build map to identify the kinds of
members to be stored in SCLM-controlled PDSs. The SINC keyword identifies the
CSP/370AD proxy member, not a generated output.

Table 29. Generated Outputs from an SCLM Build of a CSP/370AD Proxy for IMS/VS
Keyword FLM@XMV FLM@XMVM FLM@XMVQ
SINC X X X
OBJ X X X
LIST X X X
OUT1 X X X
OUT2 X X X
OUT3
OUT4
OUT5

318 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 29. Generated Outputs from an SCLM Build of a CSP/370AD Proxy for
IMS/VS (continued)
Keyword FLM@XMV FLM@XMVM FLM@XMVQ
OUT6 X
OUT7
OUT8
OUT9 X
OUT0 X

Table 30 shows the generated outputs from an SCLM Build of a CSP/370AD proxy
for the language definitions for MVS/TSO provided with SCLM. The Keyword
column indicates the keyword used in the build map to identify the kinds of
members to be stored in SCLM-controlled PDSs. The SINC keyword identifies the
CSP/370AD proxy member, not a generated output.

Table 30. Generated Outputs from an SCLM Build of a CSP/370AD Proxy for MVS/TSO
Keyword FLM@XMT FLM@XMTM FLM@XMTQ
SINC X X X
OBJ X X X
LIST X X X
OUT1 X X X
OUT2 X X X
OUT3 X
OUT4 X X
OUT5
OUT6 X
OUT7
OUT8
OUT9
OUT0

Table 31 shows the generated outputs from an SCLM Build of a CSP/370AD proxy
for the language definitions for CICS OS/2 provided with SCLM. The Keyword
column indicates the keyword used in the build map to identify the kinds of
members to be stored in SCLM-controlled PDSs. The SINC keyword identifies the
CSP/370AD proxy member, not a generated output.

Table 31. Generated Outputs from an SCLM Build of a CSP/370AD Proxy for CICS OS/2
Keyword FLM@XOC FLM@XOCM
SINC X X
OBJ
LIST
OUT1 X X
OUT2 X X
OUT3 X
OUT4
OUT5
OUT6
OUT7
OUT8
OUT9
OUT0

Each language definition for CSP/370AD 4.1 provided with SCLM contains an
example architecture definition that shows all the keywords needed for using that

Chapter 12. Cross System Product Support 319

language definition. (The example architecture definition is in the comments
section of the language definition.) The following are recommendations for creating
architecture definitions:
v Designate one high-level architecture definition to serve as the unique point of

control for each target environment. Include the architecture definition members,
CSP/370AD proxy members, and DB2 CLIST members for all the applications,
tables, and map groups involved in the system.

v Create an LEC architecture definition for each load module: one LEC
architecture definition for each application, one for each table, one for each map
group, one for each Format Module, and one for each Batch Mapping Services
Program. These LEC architecture definitions must have the CMD and PARM
statements listed in the prolog of the language definitions that are associated
with the CSP/370AD proxy members.

v In the high-level architecture definitions, use an INCLD for each MFS Control
Block member that needs to be processed.

v You could create architecture definition members that contain the CMD and
PARM statements for a specific language. Then you could use the COPY
statement to include them into LEC architecture definitions, avoiding
unnecessary retyping; also, if you needed to add another CMD or alter a PARM
option, there would be no need to modify many architecture definitions.

Example Architecture Definitions and Proxy Members: Example architecture
definitions and proxy members for the CSP/370AD Sample Application are shown
in the following figures.

System Architecture Example: The CSP/370AD system described in this example is
named CSPSAMP, and the target environment is MVS/TSO; thus, the names for
the types have the format MTxxxxxx. When the CSP/370AD system is built, the
generated sources and compiled objects for the application, table, and map groups
are stored in SCLM, together with the linked load modules and the DB2 DBRMs.
The DB2 Plan is also generated, but it is not stored in SCLM.

These examples demonstrate how architecture definitions can be used. Actual
names, types, and architectures vary.

The system architecture for this example is shown in Figure 117 on page 321.

320 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

It is possible to reduce the number of layers in the preceding figure, and this
reduces the number of HL architecture definitions. For example, the CSPSAMPL
MTARCH HL architecture definition member could contain the INCLs for the LEC
architecture definition members for each application, table, and map group.
However, if you reduce the number of layers, you also reduce the granularity of
the scope for the build. For example, using the system architecture shown in
Figure 117, it is possible to build EX00A MTARCH to build only the EX00A
application with all its related members; this would not be possible if you
eliminate this HL architecture definition member.

Top HL Architecture Definition for the CSPSAMP System: CSPSAMP MTARCH,
shown in Figure 118, is the top level HL architecture definition. It directly
references the CSPSAMPL MTARCH HL architecture definition member (for
obtaining all the load modules for all the applications) and the CSPSAMPD
MTDB2B DB2 CLIST member (for performing the DB2 operations). You can
comment out the INCLD statement for CSPSAMPD if you do not want to perform
the DB2 operations.

C S P S A M P L
M TA R C H

E X 0 0 A
M TA R C H

E X 1 0 A
M TA R C H

E X 2 0 A
M TA R C H

E X 3 0 A
M TA R C H

E X 4 0 A
M TA R C H

E X 0 0 A L
M TA R C H

E X 0 0 T 1 L
M TA R C H

E X 0 0 G L
M TA R C H

E X 0 0 G F M L
M TA R C H

S A M D E N U L
M TA R C H

E X 0 0 A
M T P R X Y

E X 0 0 T 1
M T P R X Y

E X 0 0 G
M T P R X Y

E X 0 0 G F M
M T F O B J

S A M D E N U
M T P R X Y

C S P S A M P D
M T D B 2 B

C S P S A M P
M TA R C H

. . .

Figure 117. System Architecture Example

*
* HL ARCHITECTURE DEFINITION FOR SAMPLE CSP APPLICATIONS
*
* TARGET ENVIRONMENT: MVS/TSO
* LANGUAGE: ARCHDEF
*
INCL CSPSAMPL MTARCH * PRODUCE ALL LOAD MODULES
INCLD CSPSAMPD MTDB2B * PERFORM DB2 BIND AND FREE

Figure 118. CSPSAMP MTARCH: Top High-Level Architecture Definition Example

Chapter 12. Cross System Product Support 321

HL Architecture Definition for All Load Modules for All Applications: The CSPSAMPL
MTARCH HL architecture definition, shown in Figure 119, directly references all
the architecture definitions that produce the load modules for each complete
application. Each complete application produces the actual application, table, map
group, and map group format module (if used) involved in the system.

DB2 CLIST for Performing the BIND and FREE of the DB2 Plan: The CSPSAMPD
DB2 CLIST member is stored in type MTDB2B, with a language of DB2MTB, and
has a format similar to the DB2 CLIST shown in Figure 145 on page 345.

Because the DBRMs that are included in the DB2 CLIST are created by using
language definition FLM@XMTQ, it is necessary to include the DBRM ELADBRM4,
as explained in “Examples of DB2 CLIST members for CSP/370AD 4.1” on
page 343 and Table 34 on page 347.

HL Architecture Definition for All Load Modules for EX00A: The EX00A MTARCH
HL architecture definition, shown in Figure 120, directly references all the
architecture definitions that produce the load modules for the actual application,
tables, map group, and map group format module involved with the complete
EX00A application.

*
* HL ARCHITECTURE DEFINITION TO PRODUCE ALL LOAD MODULES
* FOR ALL APPLICATIONS.
*
* TARGET ENVIRONMENT: MVS/TSO
* LANGUAGE: ARCHDEF
*
INCL EX00A MTARCH * PRODUCE ALL LOAD MODULES FOR EX00A
INCL EX10A MTARCH * PRODUCE ALL LOAD MODULES FOR EX10A
INCL EX20A MTARCH * PRODUCE ALL LOAD MODULES FOR EX20A
INCL EX30A MTARCH * PRODUCE ALL LOAD MODULES FOR EX30A
INCL EX40A MTARCH * PRODUCE ALL LOAD MODULES FOR EX40A
INCL EX50A MTARCH * PRODUCE ALL LOAD MODULES FOR EX50A
INCL EX60A MTARCH * PRODUCE ALL LOAD MODULES FOR EX60A
INCL EX70A MTARCH * PRODUCE ALL LOAD MODULES FOR EX70A

Figure 119. CSPSAMPL MTARCH: Produce All Load Modules for All Applications

*
* HL ARCHITECTURE DEFINITION TO PRODUCE ALL LOAD MODULES
* FOR THE COMPLETE APPLICATION: EX00A
*
* TARGET ENVIRONMENT: MVS/TSO
* LANGUAGE: ARCHDEF
*
INCL EX00AL MTARCH * GET LOAD MODULE FOR APPLICATION: EX00A
INCL EX00T1L MTARCH * GET LOAD MODULE FOR TABLE: EX00T1
INCL EX00GL MTARCH * GET LOAD MODULE FOR MAP GROUP: EX00G
INCL EX00GFML MTARCH * GET LOAD MODULE FOR FORMAT MODULE: EX00GFM
INCL SAMDENUL MTARCH * GET LOAD MODULE FOR TABLE: SAMDENU

Figure 120. EX00A MTARCH: Produce All Load Modules for EX00A

322 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

HL Architecture Definitions for All Load Modules for EX10A, EX20A (...): These HL
architecture definitions have the same function and format as the preceding EX00A
MTARCH HL architecture definition.

LEC Architecture Definition for the EX00A Application: The EX00AL MTARCH LEC
architecture definition, shown in Figure 121, directly references the proxy member
for the EX00A application. It also provides the statements for the link-edit step
needed when dealing with an object module obtained from a proxy with a
language of CSPMT (for applications).

CSP/370AD proxy for the EX00A Application: The EX00A MTPRXY CSP/370AD
proxy, shown in Figure 122, contains the CSP/370AD commands needed for the
generation of the COBOL source code and the object module for the EX00A
application.

LEC Architecture Definition for the EX00T1 Table: The EX00T1L MTARCH LEC
architecture definition, shown in Figure 123, directly references the proxy member
for the EX00T1 table. It also provides the statements for the link-edit step needed
when dealing with an object module obtained from a proxy with a language of
CSPMT (for tables).

*
* LEC ARCHITECTURE DEFINITION TO PRODUCE LOAD MODULE
* FOR APPLICATION: EX00A
*
* TARGET ENVIRONMENT: MVS/TSO
* LANGUAGE: ARCHDEF
*
LOAD EX00A MTLOAD * PRODUCE LOAD MODULE
LMAP EX00A MTLMAP * PRODUCE LINK MAP
INCLD EX00A MTPRXY * GENERATE OBJECT MODULE
CMD INCLUDE SYSLIB(ELARMAIN)
CMD INCLUDE SYSLIB(ELARSINT)
PARM RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)

Figure 121. EX00AL MTARCH: Produce Load Module for EX00A Application

Figure 122. EX00A MTPRXY: Produce COBOL Source Code and Object Module for EX00A
Application

Chapter 12. Cross System Product Support 323

CSP/370AD proxy for the EX00T1 Table: The EX00T1 MTPRXY CSP/370AD proxy,
shown in Figure 124, contains the CSP/370AD commands needed for the
generation of the COBOL source code and the object module for the EX00T1 table.

LEC Architecture Definition for the EX00G Map Group: The EX00GL MTARCH LEC
architecture definition, shown in Figure 125, directly references the proxy member
for the EX00G map group. It also provides the statements for the link-edit step
needed when dealing with an object module obtained from a proxy with a
language of CSPMTM.

*
* LEC ARCHITECTURE DEFINITION TO PRODUCE LOAD MODULE
* FOR TABLE: EX00T1
*
* TARGET ENVIRONMENT: MVS/TSO
* LANGUAGE: ARCHDEF
*
LOAD EX00T1 MTLOAD * PRODUCE LOAD MODULE
LMAP EX00T1 MTLMAP * PRODUCE LINK MAP
INCLD EX00T1 MTPRXY * GENERATE OBJECT MODULE
CMD INCLUDE SYSLIB(ELARSINT)
PARM RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)

Figure 123. EX00T1L MTARCH: Produce Load Module for EX00T1 Table

Figure 124. EX00T1 MTPRXY: Produce COBOL Source Code and Object Module for
EX00T1 Table

*
* LEC ARCHITECTURE DEFINITION TO PRODUCE LOAD MODULE
* FOR MAP GROUP: EX00G
*
* TARGET ENVIRONMENT: MVS/TSO
* LANGUAGE: ARCHDEF
*
LOAD EX00G MTLOAD * PRODUCE LOAD MODULE
LMAP EX00G MTLMAP * PRODUCE LINK MAP
INCLD EX00G MTPRXY * GENERATE OBJECT MODULE
CMD INCLUDE SYSLIB(ELARSINT)
PARM RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)

Figure 125. EX00GL MTARCH: Produce Load Module for EX00G Map Group

324 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

CSP/370AD proxy for the EX00G Map Group: The EX00G MTPRXY CSP/370AD
proxy, shown in Figure 126, contains the CSP/370AD commands that are needed
for the generation of the COBOL source code and the object module for the EX00G
map group.

The generation of the EX00G map group for MVS/TSO by CSP/370AD also
produces an object module that is stored as EX00GFM (note the FM suffix) in the
type MTFOBJ (which corresponds to the CSP/370AD ddname EZEFOBJ). This
object module must be linked by a separate LEC architecture definition, which is
shown later.

LEC Architecture Definition for the EX00GFM Map Group Format Module: The
EX00GFML MTARCH LEC architecture definition, shown in Figure 127, directly
references the object module for the map group format module, which is stored as
EX00GFM in MTFOBJ. It also provides the statements for the link-edit step needed
when dealing with an object module for a map group format module obtained
from a proxy with a language of CSPMTM. In this case, there are no CMD
INCLUDEs, only the PARMS statement.

LEC Architecture Definition for the SAMDENU Table: The SAMDENUL MTARCH
LEC architecture definition, shown in Figure 128, directly references the proxy
member for the SAMDENU table. It also provides the statements for the link-edit
step needed when dealing with an object module obtained from a proxy with a
language of CSPMT (for tables).

Figure 126. EX00G MTPRXY: Produce COBOL Source Code and Object Module for EX00G,
and Object Module EX00GFM

*
* LEC ARCHITECTURE DEFINITION TO PRODUCE LOAD MODULE
* FOR MAP GROUP FORMAT MODULE: EX00GFM
*
* TARGET ENVIRONMENT: MVS/TSO
* LANGUAGE: ARCHDEF
*
LOAD EX00GFM MTLOAD * PRODUCE LOAD MODULE
LMAP EX00GFM MTLMAP * PRODUCE LINK MAP
LINK EX00GFM MTFOBJ * USE EXISTING OBJECT MODULE
PARM RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)

Figure 127. EX00GFML MTARCH: Produce Load Module for EX00GFM Map Group Format
Module

Chapter 12. Cross System Product Support 325

CSP/370AD proxy for the SAMDENU Table: The SAMDENU MTPRXY CSP/370AD
proxy, shown in Figure 129, contains the CSP/370AD commands needed for the
generation of the COBOL source code and the object module for the SAMDENU
table.

HL Architecture Definition for All Load Modules for EX60A: The EX60A MTARCH
HL architecture definition, shown in Figure 130, directly references all the
architecture definitions that produce the load modules for the actual application,
tables, and map group involved with the complete EX60A application.

Because EX60A is a batch application, the map group format module is not
generated, and thus, there should not be an INCL statement to get the load
module for the format module. However, the language definition FLM@XMTM is
designed to always handle the format module and if it is not produced by
CSP/370AD as in the case for EX60G, the build translator creates a dummy
member that is stored in the MTFOBJ type.

The LEC architecture definitions EX60AL and EX60GL look similar to EX00AL and
EX00GL, with the difference that the CMD INCLUDEs for EX60AL are for the
language CSPMTQ instead of CSPMT.

Furthermore, the CSP/370AD proxy members EX60A and EX60G look similar to
EX00A and EX00G, with the difference that the language for EX60A is CSPMTQ
instead of CSPMT.

*
* LEC ARCHITECTURE DEFINITION TO PRODUCE LOAD MODULE
* FOR TABLE: SAMDENU
*
* TARGET ENVIRONMENT: MVS/TSO
* LANGUAGE: ARCHDEF
*
LOAD SAMDENU MTLOAD * PRODUCE LOAD MODULE
LMAP SAMDENU MTLMAP * PRODUCE LINK MAP
INCLD SAMDENU MTPRXY * GENERATE OBJECT MODULE
CMD INCLUDE SYSLIB(ELARSINT)
PARM RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)

Figure 128. SAMDENUL MTARCH: Produce Load Module for SAMDENU Table

Figure 129. SAMDENU MTPRXY: Produce COBOL Source Code and Object Module for
SAMDENU

326 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Examples of Architecture Definitions for Other Situations: Example architecture
definitions and proxy members for situations in target environments not covered in
the previous section are shown in the following figures.

HL Architecture Definition for All Load Modules for EX60A for MVS/Batch: The
EX60A MBARCH HL architecture definition for MVS/Batch, shown in Figure 131,
directly references all the architecture definitions that produce the load modules for
the actual application, tables, and map group involved with the complete EX60A
application.

Because EX60A is a batch application, the map group format module is not
generated; therefore, there should not be an INCL statement to get the load
module for the format module.

The generation of EX60G MBPRXY generates a Batch Mapping Services Program
called EX60GP1 that is stored in MBSRC. This source code is compiled and the
object code is placed in MBOBJ. To get the load module for this member, add an
LEC architecture definition for EX60GP1. CSP/370AD does not generate the EX60G
MBSRC member in this case.

The HL architecture definitions EX60AL and SAMDENUL look similar to EX60AL
and SAMDENUL for MVS/TSO. By the same token, proxies EX60A, EX60G, and
SAMDENU look similar to the corresponding proxies for MVS/TSO, with the
exception that the languages are CSPMBQ, CSPMBB, and CSPMB respectively.

LEC Architecture Definition for the EX60GP1 Batch Mapping Services Program: The
EX60GP1L MBARCH LEC architecture definition, shown in Figure 132, directly

*
* HL ARCHITECTURE DEFINITION TO PRODUCE ALL LOAD MODULES
* FOR THE COMPLETE APPLICATION: EX60A
*
* TARGET ENVIRONMENT: MVS/TSO
* LANGUAGE: ARCHDEF
*
INCL EX60AL MTARCH * GET LOAD MODULE FOR APPLICATION: EX60A
INCL EX60GL MTARCH * GET LOAD MODULE FOR MAP GROUP: EX60G
INCL SAMDENUL MTARCH * GET LOAD MODULE FOR TABLE: SAMDENU

Figure 130. EX60A MTARCH: Produce All Load Modules for EX60A (No Format Module)

*
* HL ARCHITECTURE DEFINITION TO PRODUCE ALL LOAD MODULES
* FOR THE COMPLETE APPLICATION: EX60A
*
* TARGET ENVIRONMENT: MVS/BATCH
* LANGUAGE: ARCHDEF
*
INCL EX60AL MBARCH * GET LOAD MODULE FOR APPLICATION: EX60A
INCLD EX60G MBPRXY * GENERATE BATCH MAPPING SERVICES PROGRAM
INCL EX60GP1L MBARCH * GET LOAD MODULE FOR

* BATCH MAPPING SERVICES PROGRAM: EX60GP
INCL SAMDENUL MBARCH * GET LOAD MODULE FOR TABLE: SAMDENU

Figure 131. EX60A MBARCH: Produce All Load Modules for EX60A for MVS/Batch

Chapter 12. Cross System Product Support 327

references the proxy member for the EX60GP1 batch mapping services program. It
also provides the statements for the link-edit step needed when dealing with an
object module obtained from a proxy with a language of CSPMBB.

HL Architecture Definition for All Load Modules for EX60A for IMS/BMP: The EX60A
MIARCH HL architecture definition for IMS/BMP, shown in Figure 133, directly
references all the architecture definitions that produce the load modules for the
actual application, tables, map group, and batch mapping services program
involved with the complete EX60A application. Furthermore, it also process the
MFS Control Blocks that were generated during the build of EX60G map group.

The processing for EX60GL MIARCH includes the generation of EX60G MIPRXY
that generates a Batch Mapping Services Program called EX60GP1 that is stored in
MISRC. This source code is compiled and the object code is placed in MIOBJ.
Thus, to get the load module for this member,add an LEC architecture definition
for EX60GP1; it looks similar to EX60GP1L MBARCH.

Furthermore, the generation of EX60G MIPRXY produces an MFS Control Block
member, EX60G MIMFS, that must be processed by the equivalent translator for
MFSUTL. This is accomplished using the INCLD statement on EX60G MIMFS. This
statement must be placed after the INCL EX60GL MIARCH that processes the
proxy member.

*
* LEC ARCHITECTURE DEFINITION TO PRODUCE LOAD MODULE
* FOR BATCH MAPPING SERVICES PROGRAM: EX60GP1
*
* TARGET ENVIRONMENT: MVS/BATCH
* LANGUAGE: ARCHDEF
*
LOAD EX60GP1 MBLOAD * PRODUCE LOAD MODULE
LMAP EX60GP1 MBLMAP * PRODUCE LINK MAP
LINK EX60GP1 MBOBJ * LINK EXISTING OBJECT MODULE
CMD INCLUDE SYSLIB(ELARSINT)
PARM RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)

Figure 132. EX60GP1: Produce Load Module for EX60GP1 Batch Mapping Services
Program

*
* HL ARCHITECTURE DEFINITION TO PRODUCE ALL LOAD MODULES
* FOR THE COMPLETE APPLICATION: EX60A
*
* TARGET ENVIRONMENT: IMS/BMP
* LANGUAGE: ARCHDEF
*
INCL EX60AIL MIARCH * GET LOAD MODULE FOR APPLICATION: EX60AI
INCL EX60GL MIARCH * GET LOAD MODULE FOR MAP GROUP: EX60G
INCL EX60GP1L MIARCH * GET LOAD MODULE FOR

* BATCH MAPPING SERVICES PROGRAM: EX60GP1
INCLD EX60G MIMFS * PROCESS MFS CONTROL BLOCKS: EX60G
INCL SAMDENUL MIARCH * GET LOAD MODULE FOR TABLE: SAMDENU

Figure 133. EX60A MIARCH: Produce All Load Modules for EX60A for IMS/BMP

328 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

HL Architecture Definition for All Load Modules for EX00A for IMS/VS: The EX00A
MVARCH HL architecture definition for IMS/VS, shown in Figure 134, directly
references all the architecture definitions that produce the load modules for the
actual application, tables, and map group involved with the complete EX00A
application. It also processes the MFS Control Blocks that were generated during
the build of map group EX00G.

The generation of EX00G MIPRXY produces an MFS Control Block member, EX00G
MVMFS, that must be processed by the equivalent translator for MFSUTL. This is
accomplished using the INCLD statement on EX00G MVMFS. This statement must
be placed after the INCL EX00GL MVARCH that processes the proxy member.

Top HL Architecture Definition for the CSPSAMP System for CICS OS/2: CSPSAMP
OCARCH, shown in Figure 135, is the top-level HL architecture definition. It
directly references the HL architecture definition members for each complete
application. Because the applications for CICS OS/2 do not use DB2, there is no
need to have a DB2 CLIST.

Only the EX00A OCARCH HL architecture definitions is shown here. The other HL
architecture definitions are similar to this one.

HL Architecture Definition for All Code for EX00A for CICS OS/2: The EX00A
OCARCH HL architecture definition, shown in Figure 136, directly references all
the CSP/370AD proxy members to produce the source code and format modules
involved with the complete EX00A application. The proxy members look similar to

*
* HL ARCHITECTURE DEFINITION TO PRODUCE ALL LOAD MODULES
* FOR THE COMPLETE APPLICATION: EX00A
*
* TARGET ENVIRONMENT: IMS/VS
* LANGUAGE: ARCHDEF
*
INCL EX00AIL MVARCH * GET LOAD MODULE FOR APPLICATION: EX00AI
INCL EX00T1L MVARCH * GET LOAD MODULE FOR TABLE: EX00T1
INCL EX00GL MVARCH * GET LOAD MODULE FOR MAP GROUP: EX00G
INCLD EX00G MVMFS * PROCESS MFS CONTROL BLOCKS: EX00G
INCL SAMDENUL MVARCH * GET LOAD MODULE FOR TABLE: SAMDENU

Figure 134. EX00A MIARCH: Produce All Load Modules for EX00A for IMS/VS

*
* HL ARCHITECTURE DEFINITION FOR SAMPLE CSP APPLICATIONS
*
* TARGET ENVIRONMENT: CICS OS/2
* LANGUAGE: ARCHDEF
*
INCL EX00A OCARCH * PRODUCE ALL CODE FOR EX00A
INCL EX10A OCARCH * PRODUCE ALL CODE FOR EX10A
INCL EX20A OCARCH * PRODUCE ALL CODE FOR EX20A
INCL EX30A OCARCH * PRODUCE ALL CODE FOR EX30A
INCL EX40A OCARCH * PRODUCE ALL CODE FOR EX40A
INCL EX50A OCARCH * PRODUCE ALL CODE FOR EX50A
INCL EX60A OCARCH * PRODUCE ALL CODE FOR EX60A
INCL EX70A OCARCH * PRODUCE ALL CODE FOR EX70A

Figure 135. CSPSAMP OCARCH: Top High-Level Architecture Definition for CICS OS/2

Chapter 12. Cross System Product Support 329

the proxies for MVS/TSO, with the exception that the languages are CSPOC for
applications and tables, and CSPOCM for the map groups.

Multitarget Architecture Definitions: You might need to generate the load modules
for multiple target environments. Check the appropriate CMD INCLUDEs to be
used in the link-edit step for the LEC architecture definitions, because they vary
from environment to environment.

The CSPSAMP ARCHDEF HL architecture definition, shown in Figure 137, is an
example of how to generate load modules for multiple environments, in this case
for MVS/TSO (MTxxxxx types) and for MVS/CICS (MCxxxxxx types). Notice that
the ARCHDEF type is used for those architecture definitions that have multiple
targets.

Running Load Modules

IBM SAA Cross System Product Running Applications V4R1 contains information on
how to prepare and run generated applications in the different target
environments.

The SCLM Build process with the language definitions for CSP/370AD 4.1 is
functionally equivalent to the CSP/370AD preparation JCL. You might still need to
perform some preparation tasks described in IBM SAA Cross System Product
Running Applications V4R1, such as any required modification of the sample
execution JCL or CLIST members generated by CSP/370AD.

*
* HL ARCHITECTURE DEFINITION TO PRODUCE ALL CODE
* FOR THE COMPLETE APPLICATION: EX00A
*
* TARGET ENVIRONMENT: CICS OS/2
* LANGUAGE: ARCHDEF
*
INCLD EX00A OCPRXY * GET CODE FOR APPLICATION: EX00A
INCLD EX00T1 OCPRXY * GET CODE FOR TABLE: EX00T1
INCLD EX00G OCPRXY * GET CODE FOR MAP GROUP: EX00G
INCLD SAMDENU OCPRXY * GET CODE FOR TABLE: SAMDENU

Figure 136. EX00A OCARCH: Produce All Code for EX00A for CICS OS/2

*
* HL ARCHITECTURE DEFINITION FOR SAMPLE CSP APPLICATIONS
* FOR MULTIPLE TARGET ENVIRONMENTS.
*
* TARGET ENVIRONMENT: MVS/TSO
* TARGET ENVIRONMENT: MVS/CICS
* LANGUAGE: ARCHDEF
*
INCL CSPSAMP MTARCH * HL FOR MVS/TSO
INCL CSPSAMP MCARCH * HL FOR MVS/CICS

Figure 137. CSPSAMP ARCHDEF: High-Level Multitarget Architecture Definition Example

330 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

As previously noted, these sample execution JCL and CLIST members under SCLM
are noneditable because they are generated outputs. Thus, you might need to copy
these sample execution JCL and CLIST members outside SCLM to modify them.

For more information on making the generated load modules available, refer to
IBM SAA Cross System Product Running Applications V4R1

Summary of SCLM Build Process without CSP/370AD Members

The SCLM Build on a high-level programming language source code member
produces an object code member. See Figure 138.

A Link Edit Control (LEC) architecture definition member with source code
member dependencies is used to create a load module member in SCLM. See
Figure 139.

Summary of SCLM Build Process with CSP/370AD Members

SCLM cannot control the CSP/370AD members stored in the CSP/370AD MSLs.
SCLM controls CSP/370AD proxy members for CSP/370AD 4.1 members. These
members contain the commands to handle the CSP/370AD members (such as
applications, tables, and map groups) that reside in the CSP/370AD MSLs. The
outputs from the CSP/370AD COBOL generation could be controlled by SCLM
because they reside in PDSs.

The goal of the SCLM Build on a CSP/370AD proxy member is to produce an
object code member, as shown in Figure 140 on page 332.

Figure 138. Build on a Source Code Member to Obtain an Object Code Member

Figure 139. Build on an Architecture Definition Member to Obtain a Load Module Member

Chapter 12. Cross System Product Support 331

However, the direct result of building the CSP/370AD proxy member is the
generation by CSP/370AD of the COBOL source that corresponds to the
CSP/370AD application, table, or map group. To transform the COBOL source into
object code, it is necessary to use the following procedure:
1. If the COBOL source has DB2 statements, perform DB2 preprocessing on the

source.
2. If the COBOL source has CICS statements, perform CICS preprocessing on the

source.
3. If the COBOL source has both DB2 and CICS statements, perform both DB2

preprocessing and CICS preprocessing on the source.
4. Compile the source.

The four possible processing flows are shown in Figure 141.

COBOL source is manipulated by the language definitions by appropriately
sequencing the necessary build translators. In fact, the role of the language
definitions is to provide the same function provided by the CSP/370AD
preparation JCL that could be produced during CSP/370AD generation. SCLM
provides a set of language definitions that cover the spectrum of the valid target
systems for CSP/370AD 4.1. Some examples of language definitions are:

Figure 140. Build on a CSP/370AD Proxy Member to Obtain an Object Code Member

Figure 141. Preprocessing of COBOL Source

332 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

v A language definition that has neither DB2 nor CICS preprocessing for the
MVS/TSO environment: FLM@XMT.

v A language definition that has the DB2 preprocessing for MVS/TSO:
FLM@XMTQ.

v A language definition that has both DB2 and CICS preprocessors for MVS/CICS:
FLM@XMCQ.

Note: The language definition for CICS OS/2 does not invoke the COBOL host
compiler. The appropriate workstation COBOL compiler should be invoked
from the workstation instead (although not from SCLM.)

In summary: The CSP/370AD proxy members generate COBOL source that is
compiled to obtain object code. The architecture definition members are used to
create load module members. See Figure 142.

Summary of SCLM Build Process for CSP/370AD with DB2 Processing: When a
CSP/370AD application uses DB2, the CSP-generated COBOL source includes DB2
calls (such as ’EXEC SQL xxx’). These calls must be processed by a DB2
precompiler to generate a Data Base Request Module (DBRM) (loosely compared to
an object code). The DBRM, in turn, is bound to provide a DB2 Plan (loosely
compared to a load module). The DB2 precompiler replaces the DB2 calls in the
COBOL source with code that can be processed by the COBOL compiler. The
language definitions FLM@XMBQ, FLM@XMCQ, FLM@XMIQ, FLM@XTQ, and
FLM@XVQ contain this DB2 preprocessing step.

The step to bind the DBRMs into the DB2 Plan is not included in the language
definitions for CSP/370AD; instead, you must process a DB2 CLIST to indicate the
DBRMs to bind to produce the DB2 Plan. To process the DB2 CLIST, a pair of
language definitions are used:
v One language definition is invoked during SCLM Build, which parses the DB2

CLIST to identify the DBRMs to bind. (The instructions on how to do the bind
follow.) This language definition also creates a copy of the DB2 CLIST to use
during SCLM Promote.

v The other language definition is invoked during SCLM Promote. It frees the DB2
Plan at the From Group and binds the DB2 Plan at the To Group.

Figure 142. Build of an Architecture Definition Member (for CSP/370AD proxies) to Create a
Load Module

Chapter 12. Cross System Product Support 333

General View of SCLM Build Process for CSP/370AD with DB2 and CICS
Processing: An overall view of the build processing for CSP/370AD with DB2
and CICS is shown in Figure 143 on page 335. This figure describes all the steps
involved in the Build of a CSP/370AD proxy or an architecture definition. The
Build causes a CSP/370AD generation of COBOL source that includes DB2 and
CICS statements. The DB2 precompiler generates the DBRM and replaces the DB2
calls from the COBOL source code that still has CICS calls.

The COBOL source with CICS calls is processed by the CICS preprocessor, and the
result is COBOL source with DB2 or CICS calls replaced. The COBOL compiler is
invoked to produce object code.

When the DB2 CLIST is built, it causes a DB2 bind of the DBRMs that produces a
DB2 Plan.

The building of an LEC architecture definition takes the object produced by the
COBOL compiler and links it to produce a load module. At execution time, the
load module interacts with the DB2 Plan to use information stored in the DB2
database.

The processing for some target environments differs slightly from Figure 143 on
page 335. For example, the processing for CICS OS/2 does not involve any
preprocessing or COBOL compilation.

334 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Figure 143. Overall Process of CSP/370AD Proxy with DB2/CICS Preprocessing (Part 1 of 2)

Chapter 12. Cross System Product Support 335

Figure 143. Overall Process of CSP/370AD Proxy with DB2/CICS Preprocessing (Part 2 of 2)

336 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 13. SCLM Support for DB2, General Information

In SCLM, you can have applications that support DATABASE 2 (DB2) processing.
Before you can use SCLM with DB2, the DB2 system must be installed and fully
operational; otherwise, SCLM cannot interact with it correctly.

In your SCLM project, you must create a DB2 CLIST for each DB2 application
plan. The DB2 CLIST must specify the Data Base Request Modules (DBRMs) to be
bound into the DB2 application plan. These DBRMs are created by the DB2
preprocessor defined in the appropriate language definitions. Because the DB2
CLIST is controlled by SCLM, it contains accounting information and can be built.
This produces build maps. The DB2 CLIST can be referenced from architecture
definitions.

The processing of a DB2 CLIST in SCLM has the following stages:
1. During the Editing stage, you must create a DB2 CLIST as described in “Create

DB2 CLIST” on page 341. The DB2 CLIST must be of the appropriate type (for
example, MTDB2B in CSP/370AD 4.1 or DB2CLIST in CSP/AD 3.3). When
parsed, the DBRMs to be bound are identified and an entry is placed in the
accounting information for the DB2 CLIST.

2. During the Build stage, the DB2 CLIST member is executed to perform the
appropriate Bind or Free DB2 operation. An identical copy of the DB2 CLIST is
created and placed in the type that is used during the Promote stage (for
example, MTDB2P in CSP/370AD 4.1 and DB2OUT in CSP/AD 3.3). You can
browse this new DB2 CLIST but you cannot edit it. SCLM does not allow build
outputs to be edited. The new DB2 CLIST is an output of a build process, and
SCLM treats all outputs as noneditable.
The difference between the original DB2 CLIST and the new DB2 CLIST is the
language value. The language for the original DB2 CLIST is associated with a
language definition that contains the parsing and build translators; the
language for the new DB2 CLIST is associated with a language definition that
contains the copy and purge translators.

3. During the Promote stage, the DB2 CLIST that was created during the Build
process is executed to perform the Copy and the Purge phases of the Promote
stage.

In your architecture definitions, always refer to the DB2 CLIST used during the
Build stage; do not refer to the DB2 CLIST used during the Promote stage.

Note: When promoting a DB2 CLIST, the members that generated the DBRMs
referenced by the DB2 CLIST are also promoted.

For additional information on SCLM support for DB2 and DB2 packages, refer to
the following publications:
v AD/Cycle Library Integration: SCLM V3.4 and CSP/370 V4.1 (GG24-3923-00)
v Migrating Applications from Vendor Libraries to SCLM (GG24-4021-00).

Note: If you are using CSP/370AD 4.1 with DB2, see “Using SCLM with
CSP/370AD 4.1, General Information” on page 277. Some DB2 types and
language definitions are already tailored to the CSP/370AD 4.1 naming
conventions.

© Copyright IBM Corp. 1990, 1999 337

Restrictions

The included members that are processed by the DB2 precompiler must reside in
the SCLM source library or its extended library for SCLM to track them as
included dependencies. Otherwise, the library should be added to the FLMSYSLB
macro in the language definitions to prevent SCLM from creating an Include
dependency. Additionally, ALCSYSLB=Y should be specified for the language
definition, or an FLMCPYLB with the appropriate library specified should be
added into the FLMALLOC that has DDNAME=SYSLIB in the COBOL compiler
step.

The parser determines the SQL include dependencies by parsing the EXEC SQL
INCLUDE statements. Some of the SCLM parsers check for SQL includes.

Refer to the SCLM Translators section of the SCLM Reference for more information.

Information For The Project Manager

Generating a Project Environment

Chapter 1. Defining the Project Environment describes the steps to set up and
maintain an SCLM project database. For DB2 support, additional considerations
within these steps must be performed. This section describes these considerations
step-by-step.

Step 1: Determine the Project’s Hierarchy

There are no additional considerations.

Step 2: Identify the Types of Data to be Supported

If you are already running an existing SCLM project that has all the data types
described in Chapter 1. Defining the Project Environment, additional types must be
created. The following types of data must be maintained and are the recommended
naming conventions:
v DBRM

Contains the source member input to a DB2 BIND. It is generated by the DB2
preprocessing step.

v DB2CLIST
A DB2 CLIST that contains editable source members. These source members are
used during SCLM Build to control Bind/Free functions for DB2.
To have DB2 CLIST members and DBRM members with the same name, an
FLMINCLS macro needs to be specified in the language definition for the DB2
CLIST members. The FLMINCLS macro must list the DBRM type first on the
TYPES parameter. An example of an FLMINCLS macro to do this follows:
*
* SPECIFY TYPES TO SEARCH FOR DBRMS THAT ARE TRACKED AS
* INCLUDES TO THE DB2 CLIST MEMBERS
*

FLMINCLS TYPES=(DBRM)

v DB2OUT
This type contains non-editable build output used during SCLM Promote to
control Bind and Free functions for DB2. During a build of a DB2 CLIST (of type
DB2CLIST), a copy of the DB2 CLIST is copied in the type DB2OUT into the

338 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

group that is being built. During a promote, this member is called to bind the
plan in the TO group and free the plan in the FROM group.

Note: If you are using CSP/370AD 4.1 with DB2, see Table 17 on page 294. Some
DB2 types are already tailored to the CSP/370AD 4.1 naming conventions.

Step 3: Establish Authorization Codes

There are no additional considerations.

Step 4: Allocate the PROJDEFS Data Sets

The data set characteristics for the new types are described in Table 32.

Table 32. SCLM Data Set Attributes for DB2 Types

Type PS or PO RECFM LRECL BLKSIZE.

DBRM PO FB 80 3120

DB2CLIST PO FB 80 3120

DB2OUT PO FB 80 3120

Note: If you are using CSP/370AD 4.1 with DB2, see Table 19 on page 299; there
are some DB2 types that are already tailored to the CSP/370AD 4.1 naming
conventions.

You can browse the example project definition, FLM@EXM2, which provides an
example of the macros used to support DB2.

Step 5: Allocate the Project Partitioned Data Sets

There are no additional considerations.

Step 6: Allocate and Create the Control Data Sets

There are no additional considerations.

Step 7: Protect the Project Environment

There are no additional considerations.

Step 8: Create the Project Definition

Specify additional types to be supported with the FLMTYPE macro.

SCLM provides many language definitions as examples. The examples serve as a
guide in the construction of language definitions for specific applications and
environments. Use the COPY macro to include any of the following sample
definitions that apply to your DB2 environment:

Table 33. Language Definitions for DB2

Member Language Description.

FLM@BD2 DB2CLIST DB2 BIND/FREE

FLM@BDO DB2OUT DB2 BIND/FREE output

FLM@2ASM DB2 preprocessing + Assembler

FLM@2CO2 DB2 preprocessing + COBOL II

Chapter 13. SCLM Support for DB2, General Information 339

Table 33. Language Definitions for DB2 (continued)

Member Language Description.

FLM@2C DB2 preprocessing + C/370

FLM@2FRT DB2 preprocessing + FORTRAN

FLM@2COB OS COBOL with DB2

FLM@2PLO PL/I OPTIMIZER with DB2

FLM@EASM ASSEMBLER F with CICS V3R2M1 and DB2

FLM@ECOB OS COBOL with DB2 and CICS

FLM@ECO2 COBOL II with DB2 and CICS

FLM@EC C/370 with DB2 and CICS

FLM@EPLO PL/I OPTIMIZER with DB2 and CICS

The DB2 language definitions that are tailored for the naming conventions of
CSP/370AD 4.1 are described in Table 21 on page 301.

Define the Language Definitions: If you have a different naming convention for
the types or languages, you need to do the following:
v Modify the DFLTTYP and LANG values on the FLMALLOC macros to reflect

your naming conventions.
v Modify the DBRMTYPE values in the OPTIONS parameter on the FLMTRNSL

macros in the language definitions to reflect your naming conventions.

Step 9: Assemble and Link the Project Definition

There are no additional considerations.

Information For The Developer

Developer Recommendations
v To use multiple environments with DB2, use the naming conventions for

CSP/370AD 4.1. Suppose that you want to use DB2 with MVS/TSO and
MVS/CICS. If you use the naming conventions for CSP/370AD 4.1 (for example,
type MTDBRM for MVS/TSO and type MCDBRM for MVS/CICS), you can
distinguish between the DBRMs for different environments.

v You can look at the names of included DBRMs for a DB2 CLIST by browsing its
accounting information:
1. Select the Utilities option from the SCLM Main Menu.
2. Select the Library option from the SCLM Utilities Menu.
3. From the SCLM Library Utility - Entry Panel, enter the DB2 type to be used

during Build (such as MTDB2B in CSP/370AD 4.1).
4. From the list of members, select the DB2 CLIST that you want to examine

and browse its accounting information.
5. From the Accounting Record for the DB2 CLIST, select the Number of

Includes.
6. Finally, you see the list of included DBRMs in the DB2 CLIST.

340 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Getting Started

Create DB2 CLIST

You must create a DB2 CLIST member for each DB2 application plan. The DB2
CLIST is a TSO CLIST that allows you to BIND or FREE the DB2 application. This
CLIST should contain code to perform the following functions:
v Allow different DB2 Subsystem names to be assigned to each group
v BIND the application plan
v FREE the application plan.

You can see the parameters and logic required in Figure 144 on page 342. Specific
examples with CSP/370AD are shown in Figure 145 on page 345.

The DB2 CLIST member allows you to specify which DBRMs are bound into the
application plan. The DB2 CLIST member is editable.

The DB2 CLIST member must have an include statement for each DBRM to be
bound in the application plan. The include statement consists of an included
directive and the name of the included DBRM. SCLM parses the member and
keeps a list of included DBRM names, as well as other accounting information. The
include directive and include DBRM name must be on the same line. The include
statement format is:

/* %INCLUDE dbrm-name */

The DB2 CLIST is usually built and promoted by using an architecture definition.
Use the SINC or INCLD keyword to reference the member from an architecture
definition. The member can also be submitted directly to build or promote. When
the member is submitted directly or is submitted through an INCLD architecture
definition keyword, SCLM uses the defaults defined in the member language
definition.

Chapter 13. SCLM Support for DB2, General Information 341

PROC 0 OPTION() GROUP()
CONTROL MSG FLUSH
/*---*/
/* DBRM PROXY DSN CLIST for a DB2 Application Plan */
/* */
/* INPUT PARAMETERS: */
/* OPTION() BIND OR FREE */
/* GROUP() GROUP NAME FOR BIND OR FREE */
/* */
/* RETURN CODES: */
/* 0 : SUCCESS */
/* 4 : WARNING */
/* 8 : ERROR */
/* 16 : FATAL ERROR */
/* 312 : INVALID GROUP */
/* 316 : INVALID OPTION */
/* */
/*---*/
/* INSTRUCTIONS FOR CUSTOMIZATION: */
/* */
/* 1) CHANGE THE ------- NAMES FOR YOUR DBRM MODULES. */
/* 2) SPECIFY VARIABLES: */
/* PLAN NAME (&PLAN -CHANGE PLANDEV, ETC...) FOR EACH GROUP */
/* SUBSYSTEM (&SYS -CHANGE DB2C) FOR EACH GROUP */
/* 3) USE THE SCLM GROUPS (DEV1, DEV2, ETC...) ACCORDING TO */
/* YOUR PROJECT. */
/* */
/*---*/
/* SPECIFY AN INCLUDE FOR EACH DBRM TO BE INCLUDED IN THE */
/* DB2 APPLICATION PLAN */
/* */
/* %INCLUDE dbrm-name */
/*---*/
SET &RCODE = 0
/*---*/
/* SPECIFY THE BIND MEMBER LIST IN &DBRMS */
/*---*/
SET &DBRMS = &STR(dbrm-name)
/*---*/
/* SPECIFY PLAN NAME, BIND PARMS, AND SYSTEM FOR EACH GROUP */
/* */
/* Note that the different bind parameters could be used at */
/* different groups. */
/* */
/*---*/
SELECT (&GROUP)
WHEN (group-name) DO

SET &PLAN = plan-name
SET &SYS = system-name
SET &BPARM = &STR(FLAG(I) EXPLAIN(NO) +

VALIDATE(BIND) ISOLATION(CS))
END

OTHERWISE DO
SET &RCODE = 312

END
END

Figure 144. DB2 CLIST Generic Example (Part 1 of 2)

342 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Examples of DB2 CLIST Members

The following sections contain examples of DB2 CLIST members.

Examples of DB2 CLIST members for CSP/370AD 4.1

Figure 102 on page 280 illustrates the basic data relationships between CSP/370AD
4.1 and SCLM when the CSP/370AD application uses DB2. The SQL code is
embedded by CSP/370AD 4.1 in the COBOL source. It is preprocessed and
compiled, creating an object module and a DBRM, which are stored in PDSs
controlled by SCLM. SCLM runs the DB2 CLIST to bind the DBRM, creating a DB2
application plan.

Figure 103 on page 280 illustrates the basic data relationships during Promote,
where the DB2 application plan must be freed from the “from group” and bound
in the “to group.” SCLM binds the application in the “to group” in the Promote
Copy phase. SCLM frees the application in the “from group” in the Promote Purge
phase.

For promotes, the DB2 application plan must be freed from the “from group” and
bound in the “to group”. SCLM binds the application in the “to group” in the
Promote Copy phase. SCLM frees the application in the “from group” in the
Promote Purge phase.

Figure 145 on page 345, an example DB2 CLIST, is based on a hierarchy containing
the groups: DEV1, DEV2, STG1, STG2, TEST, and REL. The DB2 CLIST can be
written so that a warning from the BIND or FREE returns a 0 (zero) return code to
the SCLM translator, and the Build and Promote is successful.

/*---*/
/* INVOKE DSN COMMAND PROCESSOR TO BIND OR FREE */
/*---*/
SET &ENDDSN = END
IF &RCODE = 0 THEN +
DO
SELECT (&OPTION)
WHEN (BIND) DO

DSN SYSTEM(&SYS)
BIND PLAN(&PLAN) MEMBER(&DBRMS) &BPARM;
&ENDDSN;

SET &RCODE = &MAXCC;
END

WHEN (FREE) DO
DSN SYSTEM(&SYS)

FREE PLAN(&PLAN)
&ENDDSN;

SET &RCODE = &MAXCC;
END

OTHERWISE DO
SET &RCODE = 316

END
END

END
EXIT CODE(&RCODE)

Figure 144. DB2 CLIST Generic Example (Part 2 of 2)

Chapter 13. SCLM Support for DB2, General Information 343

Review the EZEBINDx members in the EZESAMP data set provided by CSP to
determine if you need to add an additional name to the SET &DBRMS statement
in the DB2 CLIST. For example, the EZEBINDN member in EZESAMP, which is a
template for the preparation JCL for the default BIND command, specifies that
ELADBRM4 must also be bound. Thus, the DB2 CLIST must include this name in
the SET &DBRMS statement, such as:
SET &DBRMS = &STR(EX10A,ELADBRM4)

Also add the following statement to specify the data set name where ELADBRM4
resides. For example:
SET &LIB = &STR('CRS210.SELADBRM')

Finally, add the LIBRARY parameter to the BIND command. For example:
BIND PLAN(&PLAN) MEMBER(&DBRMS) LIBRARY(&LIB) &BPARM;

344 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

PROC 0 OPTION() GROUP()
CONTROL MSG FLUSH
/*---*/
/* DBRM PROXY DSN CLIST for a DB2 Application Plan */
/* WHERE THE DBRMS WERE GENERATED DURING THE PROCESSING OF */
/* CSP/370AD 4.1 PROXY MEMBERS. */
/* */
/* INPUT PARAMETERS: */
/* OPTION() BIND OR FREE */
/* GROUP() GROUP NAME FOR BIND OR FREE */
/* */
/* RETURN CODES: */
/* 0 : SUCCESS */
/* 4 : WARNING */
/* 8 : ERROR */
/* 16 : FATAL ERROR */
/* 312 : INVALID GROUP */
/* 316 : INVALID OPTION */
/* */
/*---*/
/* INSTRUCTIONS FOR CUSTOMIZATION: */
/* */
/* 1) CHANGE THE EX----- NAMES FOR YOUR DBRM MODULES. */
/* 2) SPECIFY VARIABLES: */
/* PLAN NAME (&PLAN -CHANGE PLANDEV, ETC...) FOR EACH GROUP */
/* SUBSYSTEM (&SYS -CHANGE DB2C) FOR EACH GROUP */
/* 3) CHANGE THE SCLM GROUPS (DEV1, DEV2, ETC...) ACCORDING TO */
/* YOUR PROJECT. */
/* */
/*---*/
/* SPECIFY AN INCLUDE FOR EACH DBRM TO BE INCLUDED IN THE */
/* DB2 APPLICATION PLAN */
/* */
/* %INCLUDE EX10A */
/*---*/
SET &RCODE = 0
/*---*/
/* SPECIFY THE BIND MEMBER LIST IN &DBRMS */
/*---*/
SET &DBRMS = &STR(EX10A)
/*---*/
/* SPECIFY PLAN NAME, BIND PARMS, AND SYSTEM FOR EACH GROUP */
/* */
/* Note that different bind parameters could be used at */
/* groups. */
/* */
/*---*/
SELECT (&GROUP)
WHEN (DEV1) DO

SET &PLAN = EX10DEV1
SET &SYS = DB2C
SET &BPARM = &STR(FLAG(I) EXPLAIN(NO) +

VALIDATE(BIND) ISOLATION(CS))
END

Figure 145. DB2 CLIST Example for CSP/370AD 4.1 (Part 1 of 2)

Chapter 13. SCLM Support for DB2, General Information 345

WHEN (DEV2) DO
SET &PLAN = EX10DEV2
SET &SYS = DB2C
SET &BPARM = &STR(FLAG(I) EXPLAIN(NO) +

VALIDATE(BIND) ISOLATION(CS))
END

WHEN (STG1) DO
SET &PLAN = EX10STG1
SET &SYS = DB2C
SET &BPARM = &STR(FLAG(I) EXPLAIN(NO) +

VALIDATE(BIND) ISOLATION(CS))
END

WHEN (STG2) DO
SET &PLAN = EX10STG2
SET &SYS = DB2C
SET &BPARM = &STR(FLAG(I) EXPLAIN(NO) +

VALIDATE(BIND) ISOLATION(CS))
END

WHEN (TEST) DO
SET &PLAN = EX10TEST
SET &SYS = DB2C
SET &BPARM = &STR(FLAG(I) EXPLAIN(NO) +

VALIDATE(BIND) ISOLATION(CS))
END

WHEN (REL) DO
SET &PLAN = EX10REL
SET &SYS = DB2C
SET &BPARM = &STR(FLAG(I) EXPLAIN(NO) +

VALIDATE(BIND) ISOLATION(CS))
END

OTHERWISE DO
SET &RCODE = 312

END
END

/*---*/
/* INVOKE DSN COMMAND PROCESSOR TO BIND OR FREE */
/*---*/
SET &ENDDSN = END
IF &RCODE = 0 THEN +
DO
SELECT (&OPTION)
WHEN (BIND) DO

DSN SYSTEM(&SYS)
BIND PLAN(&PLAN) MEMBER(&DBRMS) &BPARM;
&ENDDSN;

SET &RCODE = &MAXCC;
END

WHEN (FREE) DO
DSN SYSTEM(&SYS)

FREE PLAN(&PLAN)
&ENDDSN;

SET &RCODE = &MAXCC;
END

OTHERWISE DO
SET &RCODE = 316

END
END

END
EXIT CODE(&RCODE)

Figure 145. DB2 CLIST Example for CSP/370AD 4.1 (Part 2 of 2)

346 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 34 shows the relationship between the BIND templates provided by
CSP/370AD and the language definitions for CSP/370AD provided with SCLM.
This table also shows which DBRMs from CSP/370AD must be included in the
DB2 CLIST.

Check the BIND templates from CSP/370AD to determine which DBRMs are used.
These templates might have been customized during the CSP/370AD installation
process.

For more information on the CSP/370AD templates refer to IBM SAA Cross System
Product Generating Applications V4R1.

Table 34. Relationship between SCLM Language Definitions and CSP/370AD Bind Templates

Language Language
Definition

BIND
Template

DBRM from CSP/370AD to
use in DB2 CLIST

Comments

CSPMBQ FLM@XMBQ EZEBINDN ELADBRM4

EZEBINDA none. Application with DL/I

CSPMCQ FLM@XMCQ EZEBINDA none

CSPMIQ FLM@XMIQ EZEBINDA none

CSPMTQ FLM@XMTQ EZEBINDN ELADBRM4

CSPMVQ FLM@XMVQ EZEBINDR only ELADBRM3 Application (DB2 Work
Database)

EZEBIND ELADBRM3 Application (DB2 in
Application; DB2 Work
Database)

EZEBINDA none Application (DB2 in
Application)

Chapter 13. SCLM Support for DB2, General Information 347

348 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Chapter 14. SCLM Support for Workstation Builds

You can store the source for workstation applications in SCLM. You can then use
the configuration functions to build and promote the application. The build
function transfers the source to an ISPF connected workstation, runs the compiler
or other workstation tool, and then stores the results back into SCLM. SCLM
workstation builds can not be performed when ISPF is accesed from a web
browser via the ISPF JAVA environment.

Storing workstation applications in SCLM provides several benefits:
v You can use SCLM as a single point of access for the workstation code.
v You can protect and back up the application source, executables, and outputs

using the host.
v Host applications and workstation applications can share source.
v You can use SCLM’s configuration management to ensure that the application is

current.
v You can use the library management and versioning capabilities to track the

application parts through the hierarchy and to retain backup versions.

Requirements

Because of the differences in MVS and the workstation operating system, you must
meet the following requirements for SCLM to store the application source:
v The file names must follow ISPF member naming conventions and cannot be

more than 8 characters. Workstation file names can be in uppercase, lowercase,
or have initial capital followed by lowercase letters. This mapping is specified
using the WSCASE keyword in the ACTINFO file.

v Use consistent naming conventions for the extension names and subdirectory
layout. The workstation build translator provided with SCLM (FLMLTWST)
maps type names to extensions and subdirectories. Consistent use of the
extension and subdirectory names across the workstations that you use will
make sure that the mapping will work properly.

v Use consistent command names. The commands are defined by input data to the
FLMLTWST translator.

Overview of Workstation Build

The only distinction that SCLM makes between a workstation application and a
host application is where the compiler and other tools reside. The application
source and the outputs from builds are stored in PDS data sets on the host. The
result is that all of the SCLM functions work the same for a workstation
application as they do for a host MVS application except for build.

The difference between building a workstation application and a host application is
that special build translators are used for the workstation application. The user
doing the workstation build must use a workstation.

SCLM provides three build translators to build workstation applications. One
translator, FLMLTWST, is the driver and calls the other translators to perform
various tasks. In order to allow customization of the events that take place during

© Copyright IBM Corp. 1990, 1999 349

a workstation build, the FLMLTWST translator is written in REXX. This allows the
translator to be customized to meet the project’s needs. The FLMLTWST translator
performs the following tasks:
v Initialization and set up

SCLM checks the parameters, retrieves and checks the workstation information,
sets up file name mapping information, and sets up command information.

v Build map parsing
FLMLTWST calls the FLMTBMAP translator to get the contents of the build map
for the member being built. FLMLTWST parses the information in the build map
to get the list of inputs that must be transferred to the workstation and any
additional parameters that have been specified for the workstation command,
such as a compiler or other tool. FLMLTWST also gets the list of outputs after
the command is complete.
At the same time, the SCLM member names are mapped to workstation file
names based on the file name mapping information.

v Construct command parameters
FLMLTWST supports running multiple workstation commands during each
invocation. The parameters for each of the commands are put together based on
the parameters passed to FLMLTWST, the contents of the build map (input and
output file names can be included in the parameters), and on the workstation
command information.

v Response file construction
Some workstation commands support passing parameters using a file called a
response file. If the workstation command information specifies a response file,
one is created in a temporary data set and will be sent to the workstation with
the other workstation command inputs.
If multiple workstation commands will be issued, the response file for the first
workstation command is sent with the input files. Response files for later
commands are sent just before each command is run.
Response files are only generated and sent to the workstation if the workstation
command information indicates that one is to be used. If no response file is
used, the command parameters are specified with the workstation command.

v Transfer inputs to the workstation
FLMLTWST constructs a list of the input files (includes, source members, and
response file) to be sent to the workstation. The FLMTXFER translator is then
called to send the files to the workstation. FLMTXFER uses the FILEXFER
service to transfer files to the workstation.
The FLMTXFER translator keeps track of the SCLM members that have been
sent to the workstation. This record is used to ensure that include members and
source members are only transferred to the workstation once to reduce the time
required to build a workstation application. The record of what has been
transferred to the workstation is preserved in memory allocated by SCLM build.
The result is that, within a single SCLM build, FLMTXFER only downloads a
member once no matter how many source members that include it are built.
If the date and time of the host member’s statistics are the same as the date and
time of its workstation counterpart, SCLM assumes that they are the same, and
does not download the member a second time.

v Perform the workstation command
FLMLTWST constructs the workstation command based on the information
obtained in the set-up step. The command is issued on the workstation and
SCLM waits for the result.

350 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Repeat this step for each workstation command that will run for the member
being built. Before each command is issued, a response file is constructed and
transferred to the workstation if needed.

v Transfer the outputs to the host system
FLMLTWST uses a list of outputs obtained from the build map to construct a list
of files to transfer from the workstation to the host system. The FLMTXFER
translator performs the transfer from the workstation to the host. The data sets
where the files are transferred are the data sets allocated to the ddname specified
in the translator definition for FLMLTWST. If FLMLTWST ends successfully,
build transfers the members into the SCLM hierarchy.
If you have set the FLMALLOC macro IOTYPE=P, the date and time on the host
member statistics are synchronized with the date and time of the corresponding
workstation file, so that if the member is used for another build step, it will not
be downloaded again.

Information For The Project Manager

Project Setup Considerations

You must consider several things when setting up a project to support workstation
applications. This section covers items that are specific to workstation applications.
Please see “Chapter 1. Defining the Project Environment” on page 3 for
information on general project setup.

Naming Conventions

Determine what SCLM type names to use and the mapping between SCLM type
names and workstation file extensions.

The recommended approach is to have a one-to-one mapping between the SCLM
type and the workstation extension. In addition to the type-to-extension mapping,
SCLM needs to know the format of the data within each type (ascii text or binary).
To avoid having to define a mapping for each type, use something in the type
name that indicates the format of the data. For example, add BIN to the
workstation extension to create the SCLM type names for types that will contain
binary data. This will minimize the number of mapping definitions for the
ACTINFO file, because the wildcard character can be used to define a pattern in
the type and extension names.

Another approach is to merge several workstation extensions into the same SCLM
type. In this case, the workstation file names without the extension must be
unique. The drawback of this approach is that after the files are combined into one
SCLM type, they lose their individual extensions. The mapping is from the type to
the workstation. SCLM does not know what a file was once called on the
workstation. Only one extension can be defined for each type. This means that
when the files are combined, SCLM will use the same extension for all of them
when transferring them from or to the workstation. This might or might not be a
problem, depending on the type of data combined. It would not be a good idea,
for example, to combine C++ header files with H and HPP extensions into the
same SCLM type, because the C++ source members might include header files
with one or both of those extensions and would not find them if the extensions
were changed. There might be other situations where the loss of the extension
identity wouldn’t matter.

Chapter 14. SCLM Support for Workstation Builds 351

Workstation file names, excluding the paths and extensions, must be valid ISPF
PDS member names. Workstation file names can be in uppercase, lowercase, or
have initial capital followed by lowercase letters. This mapping is specified using
the WSCASE keyword in the ACTINFO file.

Languages

Next, you need to know which languages you will need.

One way to do this is to create a complex language definition that performs all of
the steps required to go from source to executable code or to whatever you want
the final result to be. The drawback to this approach is that when anything
changes all of the steps are performed rather than the minimal set. For example,
suppose there was a language that:
1. Compiled C source to an .obj
2. Compiled the resource source to an .res
3. Linked the .obj files into an .exe
4. Ran the resource compiler to add the resources from the .res to the .exe file

If the resource source changes, all of those steps are performed when some of them
could be avoided.

Another approach is to create a language for each step. However, some tools
produce outputs that are only needed until the next command is run. For example,
the output from step 3 should not be saved into the hierarchy until after the
resource compiler has been run. Saving one .exe into the SCLM hierarchy from the
compiler and another copy from the resource compiler increases the project data
set size and the time required to build.

A better approach is to create languages for each step that produces outputs that
are kept permanently in the hierarchy. So, for the previous example, you would
need three languages:

1. One language to compile C source and store the .obj files
2. One language to compile the resource source and store the .res files
3. One language to link the .obj files and add the resources from the .res files.

What Workstation Tools Will You Use?

The ACTION parameter on the FLMLTWST translator determines the workstation
command that is run. The FLMLTWST translator maps the actions to a workstation
command, determines the basic parameters to pass to that command, maps the
workstation extensions to input and output parameters, and then orders the
parameters.

In addition to the ACTION specified by the language definition, you can perform
other actions in a build step by use of the CMD ACTION statement. For more
information, refer to the FLMLTWST section of the SCLM Reference manual.

What Parameters Do You Need For the Workstation Tools?: Specify parameters
in three places:
v In the translator (FLMLTWST). The parameters specified in FLMLTWST are used

for every member of every language that calls it. They should be only the
parameters that FLMLTWST requires, such as the parameters that specify the
input and output file names.
You can specify parameters to FLMLTWST for the workstation command in
three ways:

352 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

– In the language definition and on architecture PARM statements
– On the architecture CMD statement (Refer to the FLMLTWST section of the

SCLM Reference manual for more information on the CMD statement and its
use with workstation applications).

– Using parameters that are associated with inputs and outputs.

The order of the parameters is specified in the input data to the FLMLTWST
translator and is the order required by the workstation command.

v On the FLMTRNSL macro in the language definition. These parameters are used
for every member of the language. These should be parameters that the project
requires. For example, the /Kg+ parameter can be specified to ensure that
messages are produced for all goto statements.

v In an architecture member. These parameters are specific to a member. For
example, the /DAPPL=A parameter can be used to define a preprocessor macro.

Workstation Information

The FLMLTWST translator needs information about the workstation such as the
response file name and the directory name to prefix all files transfered to or from
the workstation. It gets this information by reading from a data set.

The naming convention for the data set must be identified so that you can specify
it in all the language definitions. Typically, the same information is used for all
languages, although it is not required. The naming convention can include the
variables to substitute the userid, project, group or other information into the data
set name pattern. The variables used depend on where builds take place and on
local data set naming standards. If the user determines the workstation, the userid
should be part of the data set name. If the group determines the workstation, the
group variable should be used without the userid variable. For more information
on the USERINFODD parameter and the FLMCPYLB macro, refer to the SCLM
Reference

How to Find What You Need

The International Technical Support Centers (ITSC) Version 4 of ISPF and SCLM
Implementation Guide , GG24-4407, provides a good overview of SCLM and the ISPF
Client/Server.

For information on setting up SCLM or PDF to view and edit on the workstation,
see “The OS/390 V2R8.0 ISPF User Interface” in the ISPF User’s Guide

Information on SCLM Workstation Build is available in both SCLM manuals. The
SCLM Developer’s and Project Manager’s Guide contains information on SCLM
support for workstation builds on OS/2 and Windows. The SCLM Reference
manual, under “SCLM Translators”, contains information on the FLMLRC2 and
FLMLRIPF sample parsers, as well as the FLMLTWST translator. For information
on the ACTINFO files, USERINFO files, and workstation language definitions, see
“FLMLTWST” in the SCLM Reference

The ISPF Sample and Macro libraries contain a number of files to support SCLM
workstation builds. The ISPF Sample Library contains the following:
v FLMWBMIG - Sample migration EXEC for IBM CSET++ for OS/2 “Hello World

6” sample
v FLMWBUSR - Sample USERINFO file

Chapter 14. SCLM Support for Workstation Builds 353

v FLMWBAIO - Sample ACTINFO file for IBM CSET++ for OS/2 “Hello World 6”
sample

v FLMWBAIW - Sample ACTINFO file for Borland (TM) C++ “Hello World”
sample

v FLMWBPRJ - Sample workstation project definition
v FLMWBJCL - Sample JCL to allocate the data sets for the FLMWBPRJ sample

project.
v FLMWBTMP - Sample workstation language definition template
v FLMWBOS2 - High-level architecture definition to build IBM CSET++ for OS/2

“Hello World 6” sample
v FLMWBIPF - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” help file
v FLMWBDLL - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” DLL file
v FLMWBEXE - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” EXE file
v FLMWBWIN - High-level architecture definition to build Borland C++ “Hello

World” sample

The Macro Library contains sample language definitions for OS/2 and Windows.
The IBM CSET++ for OS/2 language definitions are:
v FLM@WICC - Compile
v FLM@WDUM - Compile dummy object to hold DLLs
v FLM@WEXE - Link EXE
v FLM@WIPF - Build Help
v FLM@WLNK - Link386 to Link the DLL
v FLM@WRC - Resource compile

The Borland (TM) C++ for Windows language definitions are:
v FLM@WBCC - Compile
v FLM@WBRC - Resource Compile
v FLM@WTLK - TLINK OBJ to EXE

Information For The Developer

Migrating Applications into SCLM

To migrate a workstation application into SCLM:
1. Get the project information from the project manager. The information you

need is:
v The name of the development group where the members will be stored
v The type names and their mapping to workstation file extensions
v The languages to use for source members
v The default parameters specified in the language definition for each

language.
v The actions and defaults specified in the ACTINFO file for workstation build.

2. Transfer the application source to the MVS system into the data sets for the
development group based on the workstation file to SCLM type name mapping
established for the project.

354 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Files containing data that can be edited on MVS must be transferred with
ASCII-to-EBCDIC translation. Other files can be transferred in binary format
(no translation). The FILEXFER service is recommended to avoid possible
translation problems.

3. Migrate the members into SCLM using the languages supplied by the project
manager.

4. Create architecture definition members as needed.

Architecture Definition Members for Workstation Applications

Architecture definition members must be created in any of the following cases:
v The source member requires options that were not specified in the language

definition or action info data set.
v You need to override the inputs or outputs used in the language definition.
v The output member names are not the same as the source member name. See

“Statement Uses” on page 257 for a description of the output keywords for
architecture members.
Some things can be done in the language definition to support adding a prefix
or suffix to the output member name, but these capabilities do not support all
possibilities. For more information, refer to the DFLTMEM parameter on the
FLMALLOC macro in the SCLM Reference Guide.

v Outputs from the builds of other members are inputs to this build, for example,
linking object modules together.

v Multiple workstation commands must be issued to complete the build step.
v To specify a relationship between components other than the source-to-include

and input-to-output relationships generated by SCLM. An example would be to
specify a relationship between the executable, DLL, and help components of a
workstation application.

Specifying Options

Options can be specified to the workstation compiler, linker, or other tool by using
the architecture definition CMD statement. This statement must be followed by the
keyword PARMS and the parameters that are passed to the workstation tool. In the
following example, the option ‘/Ss’ is added to the options passed to the
workstation tool.

If multiple CMD PARMS statements appear in the architecture member, the
options are passed to the workstation tool in the order they appear in the
architecture member. They are added to the workstation command as specified in
the ACTINFO input to the FLMLTWST translator.

SINC SAMPLE C * source member
OBJ SAMPLE OBJBIN * generated object member
LIST SAMPLE LISTING * listing file
*
* The following CMD statement has compile options for this member
*
CMD PARMS /Ss

Figure 146. Specifying Options in a Workstation Architecture Definition

Chapter 14. SCLM Support for Workstation Builds 355

If you want to add options to be passed to the FLMLTWST translator, you can use
the PARM and PARMx architecture statements. However, these options are
considered FLMLTWST options rather than options for the workstation command.

Including Outputs From Other Build Steps

Use the architecture definition statements INCLD, INCL, and SINC to include
members that are outputs from building other members. Using the INCLD and
INCL statements ensures that SCLM builds the correct member to generate the
output.

When a CC or generic architecture definition is built, SCLM uses the language
definition of the member on the first SINC statement. For LEC architecture
definitions, the LE370 language is used. To override the language, specify the
LKED architecture statement with the name of the language definition to use.

The following example shows an architecture member that can link several object
members together to produce an .exe file. The language of EXE is used.

Running Multiple Workstation Commands

Building some members requires that multiple workstation commands be issued.
The FLMLTWST translator issues a workstation command for each action it finds.
The first action is the one specified by the ACTION parameter to FLMLTWST in
the language definition, or the default action if none is specified. Additional actions
can be performed by using the architecture CMD statement with the ACTION
keyword. The ACTION keyword must be followed by an action defined in the
FLMLTWST translator.

The following example shows an architecture member that links two object
modules together and then runs another workstation command prior to
transferring the outputs to the MVS system. In this example, the second command
runs the OS/2 resource compiler to add the information from a binary resource file
to the .exe generated by the link.

INCL SAMPLE ARCHDEF * archdef which produced sample object
INCLD COMMON C * source member which produced common object
*
LKED EXE
*
LOAD PROG1 EXEBIN * .exe file
LMAP PROG1 MAP * listing file

Figure 147. Including Outputs as Inputs

356 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The order of the INCL and INCLD statements in the previous example is not
important. The FLMLTWST translator determines which files are inputs to each
step based on information defined in the translator. The appropriate options are
also added for each of the inputs and outputs by the FLMLTWST translator.

Specifying Options

Options can be specified to the workstation compiler, linker, or other tool by using
the architecture definition CMD statement. This statement must be followed by the
keyword PARMS and the parameters that are passed to the workstation tool. In the
following example, the option ‘/Ss’ is added to the options passed to the
workstation tool.

If multiple CMD PARMS statements appear in the architecture member, the
options are passed to the workstation tool in the order they appear in the
architecture member. They are added to the workstation command as specified in
the ACTINFO input to the FLMLTWST translator.

If you want to add options to be passed to the FLMLTWST translator, you can use
the PARM and PARMx architecture statements. However, these options are
considered FLMLTWST options rather than options for the workstation command.

*
LKED EXE * link language
*
KREF OBJ * include generated object modules
*
INCL MAHJONGC ARCHDEF * archdef that produces MAHJONGG OBJBIN
INCL TILE ARCHDEF * archdef that produces TILE OBJBIN
SINC MAHJONGG DEF * DEF source
*
LOAD MAHJONGG EXEBIN * Generated .exe file
LMAP MAHJONGG MAP * Generated .map file
*
* Run resource compiler after the link completes
*
CMD ACTION RCEXE
*
KREF OUT1 * include generated .res file
*
INCLD MAHJONGG RC * Source that produces MAHJONGG RESBIN
*

Figure 148. Multiple Workstation Commands

SINC SAMPLE C * source member
OBJ SAMPLE OBJBIN * generated object member
LIST SAMPLE LISTING * listing file
*
* The following CMD statement has compile options for this member
*
CMD PARMS /Ss

Figure 149. Specifying Options in a Workstation Architecture Definition

Chapter 14. SCLM Support for Workstation Builds 357

Including Outputs From Other Build Steps

Use the architecture definition statements INCLD, INCL, and SINC to include
members that are outputs from building other members. Using the INCLD and
INCL statements ensures that SCLM builds the correct member to generate the
output.

When a CC or generic architecture definition is built, SCLM uses the language
definition of the member on the first SINC statement. For LEC architecture
definitions, the LE370 language is used. To override the language, specify the
LKED architecture statement with the name of the language definition to use.

The following example shows an architecture member that can link several object
members together to produce an .exe file. The language of EXE is used.

Running Multiple Workstation Commands

Building some members requires that multiple workstation commands be issued.
The FLMLTWST translator issues a workstation command for each action it finds.
The first action is the one specified by the ACTION parameter to FLMLTWST in
the language definition, or the default action if none is specified. Additional actions
can be performed by using the architecture CMD statement with the ACTION
keyword. The ACTION keyword must be followed by an action defined in the
FLMLTWST translator.

The following example shows an architecture member that links two object
modules together and then runs another workstation command prior to
transferring the outputs to the MVS system. In this example, the second command
runs the OS/2 resource compiler to add the information from a binary resource file
to the .exe generated by the link.

INCL SAMPLE ARCHDEF * archdef which produced sample object
INCLD COMMON C * source member which produced common object
*
LKED EXE
*
LOAD PROG1 EXEBIN * .exe file
LMAP PROG1 MAP * listing file

Figure 150. Including Outputs as Inputs

358 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

The order of the INCL and INCLD statements in the previous example is not
important. The FLMLTWST translator determines which files are inputs to each
step based on information defined in the translator. The appropriate options are
also added for each of the inputs and outputs by the FLMLTWST translator.

Sample Language Definition

The following sample shows a language definition for compiling C source
members on the workstation. A description of the items in the language definition
follows.

*
LKED EXE * link language
*
KREF OBJ * include generated object modules
*
INCL MAHJONGC ARCHDEF * archdef that produces MAHJONGG OBJBIN
INCL TILE ARCHDEF * archdef that produces TILE OBJBIN
SINC MAHJONGG DEF * DEF source
*
LOAD MAHJONGG EXEBIN * Generated .exe file
LMAP MAHJONGG MAP * Generated .map file
*
* Run resource compiler after the link completes
*
CMD ACTION RCEXE
*
KREF OUT1 * include generated .res file
*
INCLD MAHJONGG RC * Source that produces MAHJONGG RESBIN
*

Figure 151. Multiple Workstation Commands

Chapter 14. SCLM Support for Workstation Builds 359

* *
* SCLM LANGUAGE DEFINITION FOR IBM CSET/2 OR CSET++ FOR OS/2 *
* COMPILE SOURCE TO OBJECT *
* *

*
*
CPPOS2 FLMLANGL LANG=CPPOS2, C

VERSION=2, C
CHKSYSLB=IGNORE

*
FLMINCLS TYPES=(H,HPP,@@FLMTYP,@@FLMETP)

H FLMINCLS TYPES=(H)
HPP FLMINCLS TYPES=(HPP)
*
* PARSER
*

FLMTRNSL CALLNAM='C/C++ PARSE', C
FUNCTN=PARSE, C
CALLMETH=TSOLNK, C
COMPILE=FLMLRC2, C
PORDER=1, C
OPTIONS=(STATINFO=@@FLMSTP, C
LISTINFO=@@FLMLIS, C
LISTSIZE=@@FLMSIZ)

*
* (* SOURCE *)

FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

*
* BUILD
*

FLMTRNSL CALLNAM='C/C++', C
FUNCTN=BUILD, C
CALLMETH=ISPLNK, C
COMPILE=SELECT, C
VERSION=1, C
GOODRC=0, C
PORDER=1, C
OPTIONS='CMD(FLMLTWST ACTION=COMPILE,BMAPINFO=@@FLM$MP,SC
CLMINFO=@@FLMINF,BLDINFO=@@FLMBIO,PARMS='

*

Figure 152. Workstation C Language Definition (Part 1 of 2)

360 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

FLMLANGL macro
This macro specifies the language name, CPPOS2, the language version, ″1″,
and that SCLM is to ignore any includes that are not in the project hierarchy.

FLMINCLS macro
This macro indicates the types searched when looking for includes. Includes
with the workstation file extension ’h’ are found in the H type. Other includes
are found in the type of the source member or its extended type.

FLMTRNSL macro (functn=parse)
This macro identifies the parser to use when the members of this language are
updated. The parser scans the member for include dependencies and counts
statistics. See the SCLM Reference Guide for a description of the FLMLRC2
parser.

FLMTRNSL macro (functn=build)
This is the definition of the build translator. It calls FLMLTWST to perform the
compile on the workstation. The ACTION parameter is set to compile to
indicate that the compiler is to be called. The PARMS parameter at the end of
the parameter string allows for PARM keywords in the language definition to
specify additional parameters. The other parameters are used to pass
information between SCLM build and the translators that FLMLTWST calls.

FLMALLOC macro (ddname=obj)
This macro allocates the ddname that will hold the .obj file generated on the
workstation. The RECFM and LRECL values must match the allocation of the
data set in the hierarchy where the .obj file will be stored.

IOTYPE=O
indicates that a sequential data set will be allocated to hold the output

* (* OBJ *)
FLMALLOC IOTYPE=P,RECFM=VB,LRECL=1024, C

RECNUM=4000,DDNAME=OBJ,CATLG=Y,KEYREF=OBJ, C
DFLTTYP=OBJBIN,DFLTMEM=*,LANG=EXE

* (* LIST *)
FLMALLOC IOTYPE=O,RECFM=VB,LRECL=256, C

RECNUM=4000,DDNAME=LIST,CATLG=Y,PRINT=I, C
KEYREF=LIST,DFLTTYP=LST

* (* USERINFO *)
FLMALLOC IOTYPE=A,DDNAME=USERINFO
FLMCPYLB @@FLMUID.SCLM.USERINFO

* (* ACTINFO *)
FLMALLOC IOTYPE=A,DDNAME=ACTINFO
FLMCPYLB @@FLMPRJ.PROJDEFS.ACTINFO

* (* MESSAGE *)
FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,DISP=MOD, C

RECNUM=4000,DDNAME=MESSAGE,PRINT=I
* (* MSGXFER *)

FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,CATLG=Y, C
RECNUM=4000,DDNAME=MSGXFER

* (* BMAP *)
FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256, C

RECNUM=4000,DDNAME=BMAP,PRINT=I
* (* FILES *)

FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,CATLG=Y, C
RECNUM=4000,DDNAME=FILES,PRINT=I

* (* RESPONSE *)
FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256, C

RECNUM=4000,DDNAME=RESPONSE,PRINT=I,CATLG=Y
*

Figure 152. Workstation C Language Definition (Part 2 of 2)

Chapter 14. SCLM Support for Workstation Builds 361

IOTYPE=P
indicates that a partitioned data set will be allocated to hold the
output. Using IOTYPE=P can improve build performance for builds
with more than one step by copying the date and time of the
workstation file to the host member. If the file is needed for subsequent
build steps, the copy on the workstation will be used rather than
downloading the file that was just uploaded.

DFLTMEM=*
indicates that the output member in the PDS will have the same name
as the member being built

RECNUM
Indicates the maximum number of records that can be stored in the
data set

CATLG=Y
Allows the file to be transferred from the workstation to the data set
allocated to this ddname

KEYREF=OBJ
indicates that this is an object module. This references the architecture
OBJ statement. See the SCLM Developer’s Guide for more information on
architecture statements.

DFLTTYP
indicates the type in the hierarchy where the member is stored.

LANG
Gives the language to associate with the output member. This can be
used later if the member is the input to another translator.

Because the KEYREF parameter is OBJ, the FLMLTWST translator requires the
ddname to be OBJ also or the OBJ parameter must be specified giving the
ddname. For example, to use the ddname OBJBIN for outputs with a KEYREF
of OBJ, you must specify ″OBJ=OBJBIN″ in the options string of the
FLMLTWST translator.

FLMALLOC macro (ddname=list)
This is the allocation for the ddname to hold the .lst (listing) file that was
generated on the workstation. This FLMALLOC has IOTYPE=O to allocate a
sequential data set to hold the listing that will be stored back in the hierarchy.
The PRINT parameter is also specified to initialize the data set and then copy
it to the user’s BUILD.LISTnn data set if needed. The IOTYPE=O or IOTYPE=P
is needed because of the PRINT parameter.

FLMALLOC macro (ddname=userinfo)
This macro allocates the USERINFO data set. The FLMCPYLB macro that
follows it allocates an existing data set to the ddname. The data set has the
userid as the high-level qualifier, followed by SCLM.USERINFO. See the
description of the FLMLTWST translator for the contents of this data set.

FLMALLOC macro (ddname=actinfo)
This is the allocation for the ACTINFO data set. The FLMCPYLB macro that
follows it allocates an existing data set to the ddname. The data set has the
project as the high-level qualifier, followed by ″PROJDEFS.ACTINFO″.

FLMALLOC macro (ddname=message)
This ddname stores messages from the translators that FLMLTWST calls. If the
FLMTXFER translator fails, this is the first place to look.

362 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

FLMALLOC macro (ddname=msgxfer)
This ddname is used to transfer message files from the workstation to the host.
After the messages are transferred to the host, they are appended to the
messages ddname.

FLMALLOC macro (ddname=bmap)
This is the ddname where the FLMTBMAP translator writes the build
information.

FLMALLOC macro (ddname=files)
This is the ddname to which FLMLTWST writes the list of files for FLMTXFER
to transfer.

FLMALLOC macro (ddname=response)
This is the ddname where FLMLTWST generates the response file that is sent
to the workstation. ACTION=COMPILE uses a response file; but if no response
file is needed for the action, this ddname can be omitted.

Workstation Setup

Workstation build expects the workstations to transfer files and issue commands in
a consistent way. However, some information can vary from workstation to
workstation. This information is contained in the user info data set allocated to the
ddname that is specified by the USERINFO parameter when calling the
FLMLTWST translator. Refer to the description of the FLMLTWST translator in the
SCLM Reference for information on the contents of this data set.

Directories and File Names

FLMLTWST constructs workstation file names from four components:
v The data directory is obtained from the userinfo data set (as specified by the

DATA_DIR keyword). It can contain drive letters and whatever is necessary to
establish the base path for the files and subdirectories.

v The subdirectory is obtained from the ACTINFO data set. The subdirectory is
based on the type of the member. Subdirectories can be used to place different
types of members in different directories for the workstation command or tool.

v The file name is the SCLM member name.
v The extension is obtained from the ACTINFO data set that maps SCLM types to

extensions.
v The case (upper or lower) of the workstation file name is set based on the

WSCASE value specified in the ACTINFO data set.

When SCLM constructs the full file name from the above components, it does not
add or remove any characters from each of the components. Each component must
be set up so that when it is combined with the others it will make a valid file
name.

The FLMLTWST translator as it is shipped expects the data directory name not to
end with a ’/’ or ’\’, but the subdirectory should start and end with these
characters. The extension contains the ’.’ character.

Following are some examples of how FLMLTWST would put these four
components together:

Chapter 14. SCLM Support for Workstation Builds 363

Data Directory Subdirectory File Name
(Member)

Extension Generated File Name

e:\temp \ example1 .c e:\temp\example1.c

e: \temp\ example2 .h e:\temp\example2.h

\temp \bin\ example3 .exe \temp\bin\example3.exe

The FLMLTWST translator does not clean out the directories after the workstation
command is complete and the outputs have been transferred to the MVS system.
The workstation owner must clean out the directories periodically to ensure that
the workstation disk(s) do not fill up.

Multiple Builds on One Workstation

SCLM supports using a single workstation for doing multiple builds either for a
single user or multiple users. However, if the builds are taking place at different
groups, either the base directory or the subdirectory must differ based on the
group. This will avoid the problem of different builds overlaying one another’s
files.

One setup would have all builds at a specific group in the SCLM hierarchy occur
on a specific workstation. In this case, the hierarchy view for all builds taking
place on the workstation will be consistent so a single set of directories can be
used or the directory names can vary based on the user performing the build.

Another setup would have a separate workstation for each user. In this case, either
each user would need to ensure that all builds running concurrently are for the
same group or the directory names would need to vary based on the group where
the build is taking place.

Two methods to vary the directory name by the build group are:
v Include the @@FLMGRP variable in the FLMCPYLB allocation of the USERINFO

data set. Then ensure that the USERINFO data sets that now include the group
name in the data set name also vary the base directory based on the group
name.

v Update the logic of FLMLTWST to accept a parameter with the group name
where the build is taking place. Then generate the subdirectory based on the
group. The language definition must set the group parameter to @@FLMGRP to
pick up the build group.

364 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Part 4. Appendixes

© Copyright IBM Corp. 1990, 1999 365

366 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Appendix. SCLM Variables and MetaVariables

SCLM Variable and Metavariable Descriptions

SCLM variables are character strings that SCLM replaces with a value. SCLM
replaces these variables with eight-character values except for the following:
v @@FLMICN variable has a value with a maximum length of 110
v @@FLMXCN variable has a value with a maximum length of 110
v @@FLM$UD variable has a value with a maximum length of 128
v @@FLM$XD variable has a value with a maximum length of 110
v @@FLM$XN variable has a value with a maximum length of 110
v @@FLM$XU variable has a value with a maximum length of 110
v @@FLMLIS variable contains an address in decimal character format
v @@FLMSTP variable contains an address in decimal character format
v @@FLMINC variable contains an address in decimal character format
v @@FLMINF variable contains an address in decimal character format
v @@FLMDSD variable has a value with a maximum length of 44
v @@FLMDSF variable has a value with a maximum length of 44
v @@FLMDSN variable has a value with a maximum length of 44
v @@FLMDOx variable has a value with a maximum length of 44 (x is an integer

between 0 and 9).
v @@FLMDST variable has a value with a maximum length of 44
v @@FLM$MP variable has a value with a maximum length of the build map.

In addition to these variables, SCLM has metavariables that represent SCLM
internal tracking data. Table 38 on page 381 lists the SCLM metavariables and their
corresponding SCLM variables. Use a metavariable in place of a combination of
single SCLM variables. Variables are listed in the order in which their data values
appear in the database contents utility report. There are metavariables for the fixed
portion of the data and for the long (repeating) portion of the data. Table 37 on
page 379 lists the SCLM metavariables and a short description of each.

You can use SCLM variables in the following places:
v On the FLMINCLS macro TYPES parameter. The following variables are

supported for this parameter:
– @@FLMTYP
– @@FLMETP
– @@FLMCRF
– @@FLMECR

v With the PARM and PARMX architecture definition keywords
v On the FLMTRNSL macro OPTIONS parameter
v On the FLMALLOC macro MEMBER parameter. The following variables are

supported for this parameter:
– @@FLMMBR
– @@FLMONM

v On the FLMCPYLB macro. The following variables are supported for
FLMCPYLB statements associated with an IOTYPE I or an IOTYPE A
FLMALLOC macro:
– @@FLMDBQ
– @@FLMSRF

© Copyright IBM Corp. 1990, 1999 367

– @@FLMPRJ
– @@FLMALT
– @@FLMUID
– @@FLMGRP
– @@FLMMBR
– @@FLMTYP
– @@FLMDSN

v On the Database Contents Utility line format parameter (DBUTIL)
v On the DSNAME parameter on the FLMCNTRL and FLMALTC macros. The

following variables are supported for these parameters:
– @@FLMPRJ
– @@FLMGRP
– @@FLMTYP

v On the EXPACCT and EXPXREF parameters of the FLMCNTRL and FLMALTC
macros. The following variables are supported for these parameters:
– @@FLMPRJ
– @@FLMGRP
– @@FLMUID

v On the VERPDS parameter of the FLMCNTRL and FLMALTC macros. The
following variables are supported for these parameters:
– @@FLMPRJ
– @@FLMGRP
– @@FLMTYP
– @@FLMDSN

Many of the variables can be used only for certain translator types and the SCLM
utilities. Table 35 lists the SCLMvariables in alphabetic order by description and
indicates for which translator types they can be used. Table 36 on page 374 lists the
SCLM variables in alphabetic order by variable name.

SCLM Variable and Metavariable Tables

The following tables illustrate SCLM variables and metavariables and their SCLM
functions. Pass these variables to a translator using the OPTIONS= parameter of
the FLMTRNSL macro.

Variables marked with a P are passed to PDS member (PDSDATA=Y on the
FLMTRNSL macro) translators.

Variables marked with an I are passed to Ada Intermediate translators (PDSDATA=N
on the FLMTRNSL macro.)

Variables marked with an E are passed to the External dependency translators
(such as CSP/370AD.)

Variables marked with a U are passed to the DBUTIL service.

Note: Certain variables are passed to multiple translators depending on their
function and data.

368 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

SCLM Variable Descriptions, Variable Names, and Their SCLM
Functions

Table 35 lists the SCLM variables in alphabetic order by their short description.

Table 35. SCLM Variable Descriptions, Names, and Their SCLM Functions

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Access Key @@FLMACK U

Accounting Group @@FLMGRP P P I E P P I E P U

Accounting Group
Data Set Name @@FLMDSN P P P P P U

Accounting
Member @@FLMMBR P P P P P U

Accounting Record
Type @@FLMATP U

Accounting Status @@FLMSTA U

Accounting Type @@FLMTYP P P P P P U

Alternate Project
Definition @@FLMALT P P I P P I P U

Assignment
Statements @@FLMASG U

Authorization
Code @@FLMACD U

Authorization
Code Change @@FLMACC U

Blank Lines @@FLMBLL U

Buffer Size in
Bytes @@FLMSIZ P E E P E E

Build Group @@FLMGRB P U

Build Map @@FLM$MP P U

Build Map
Information @@FLMBIO P

Build Map Date @@FLMMDT P P P U

Build Map Name @@FLMMNM U

Build Map Time @@FLMMTM P P P U

Build Map Type @@FLMMSC U

Build Mode @@FLMBMD E

Calling Function
Name @@FLMFNM P I P I P

Change Code @@FLM$CC U

Change Code Date @@FLM$CD U

Change Code Time @@FLM$CT U

Change Date @@FLMCDT P P P U

Change Group @@FLMCLV U

Change Time @@FLMCTM P P P U

Appendix. SCLM Variables and MetaVariables 369

||||||||

Table 35. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Change User ID @@FLMCUS U

Comment Lines @@FLMCML U

Comment
Statements @@FLMCMS U

Compilation Unit
Name @@FLM$XN U

Compilation Unit
Type @@FLM$XT U

Control Statements @@FLMCNS U

Creation Date @@FLMIDT U

Creation Time @@FLMITM U

CREF Type @@FLMCRF

Cross Reference
Authorization
Code @@FLMXAC U

Cross Reference
Change Date @@FLMXCD U

Cross Reference
Change Time @@FLMXCT U

Cross Reference
CU Downward
Dependency @@FLM$XD U

Cross Reference
CU Name @@FLMXCN U

Cross Reference
CU Number of
Downward
Dependencies @@FLMNXD U

Cross Reference
CU Number of
Upward
Dependencies @@FLMNXU U

Cross Reference
CU Upward
Dependency @@FLM$XU U

Cross Reference
CU Type @@FLMXCP U

Cross Reference
DB Qualifier @@FLMXDQ U

Cross Reference
Generic Flag @@FLMXGF U

Cross Reference
Group @@FLMXGP U

Cross Reference
SCLM Version @@FLMXVS U

Cross Reference
Member @@FLMXMB U

370 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 35. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Cross Reference
Type @@FLMXTP U

CU List @@FLMLST I I

Database Qualifier @@FLMDBQ P I I U

Data Set Name for
OUT0 @@FLMDO0 P E

Data Set Name for
OUT1 @@FLMDO1 P E

Data Set Name for
OUT2 @@FLMDO2 P E

Data Set Name for
OUT3 @@FLMDO3 P E

Data Set Name for
OUT4 @@FLMDO4 P E

Data Set Name for
OUT5 @@FLMDO5 P E

Data Set Name for
OUT6 @@FLMDO6 P E

Data Set Name for
OUT7 @@FLMDO7 P E

Data Set Name for
OUT8 @@FLMDO8 P E

Data Set Name for
OUT9 @@FLMDO9 P E

DDNAME
Substitution List @@FLMDDN P

Default Type @@FLMSRF P

Dependencies
Pointer @@FLMLIS P E E P E E

Destination Group @@FLMGRD P P P

Destination Group
Data Set Name @@FLMDSD P P P

Dynamic Includes
Pointer @@FLMINC P

Extended CREF
Type @@FLMECR

Extended Type of
Source Member @@FLMETP

Function
Invocation Date @@FLMFDT P P P P

Function
Invocation Time @@FLMFTM P P P P

Group Found @@FLMGRF P P P

Group Found Data
Set Name @@FLMDSF P P P

Appendix. SCLM Variables and MetaVariables 371

Table 35. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Include @@FLM$IN U

Include-Sets for
Includes @@FLM$IS U

Intermediate
Change Date @@FLMICD U

Intermediate
Change Group @@FLMICG U

Intermediate
Change Time @@FLMICT U

Intermediate
Change User ID @@FLMICU U

Intermediate
Compilation Name @@FLMICN U

Intermediate
Compilation Type @@FLMICP U

Intermediate
Creation Date @@FLMIRD U

Intermediate
Creation Time @@FLMIRT U

Intermediate DB
Qualifier @@FLMIDQ U

Intermediate
Group @@FLMIGP U

Intermediate
Language @@FLMILG U

Intermediate
Language Version @@FLMILV U

Intermediate Map
Date @@FLMIMD U

Intermediate Map
Name @@FLMIMN U

Intermediate Map
Time @@FLMIMT U

Intermediate Map
Type @@FLMIMP U

Intermediate
Member @@FLMIMB U

Intermediate
SCLM Version @@FLMIVS U

Intermediate
Member Version @@FLMISV U

Intermediate Type @@FLMITP U

Intermediate
Translation Version @@FLMITV U

Language @@FLMLAN P P P U

Language Version @@FLMLVS U

372 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 35. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Member Version @@FLMMVR U

Number of
Change Codes @@FLMNCC U

Number of
Compilation Units @@FLMNCU P I P I P U

Number of
Includes @@FLMNIN U

Number of
Noncomment
Lines @@FLMNCL U

Number of
Noncomment
Statements @@FLMNCS U

Number of User
Entries @@FLMNUE U

Output Member
Name @@FLMONM

OUT0 Member
Name @@FLMOU0 P

OUT1 Member
Name @@FLMOU1 P

OUT2 Member
Name @@FLMOU2 P

OUT3 Member
Name @@FLMOU3 P

OUT4 Member
Name @@FLMOU4 P

OUT5 Member
Name @@FLMOU5 P

OUT6 Member
Name @@FLMOU6 P

OUT7 Member
Name @@FLMOU7 P

OUT8 Member
Name @@FLMOU8 P

OUT9 Member
Name @@FLMOU9 P

Predecessor Date @@FLMBDT U

Predecessor Time @@FLMBTM U

Project @@FLMPRJ P P I P P I P U

Prolog Lines @@FLMPRL U

Promote Date @@FLMPDT U

Promote Time @@FLMPTM U

Promote User ID @@FLMPUS U

Appendix. SCLM Variables and MetaVariables 373

Table 35. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

SCLM Internal
Data Pointer @@FLMINF P E P I E P I E P E

SCLM Version @@FLMVER U

Static Pointer @@FLMSTP P

Sysprint
DDNAME @@FLMDDO P I P I P

System User ID @@FLMUID P P P P

Target Group @@FLMTOG P I E P E P

Target Group Data
Set Name @@FLMDST P P P

Top CU Name @@FLMCUN P

Total Lines @@FLMTLL U

Total Statements @@FLMTLS U

Translator Version @@FLMTVS U

User Data Entry @@FLM$UD U

SCLM Variables and Their SCLM Functions

Table 36 lists the SCLM variables in alphabetic order by variable name.

Table 36. SCLM Variables and Their SCLM Functions

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMACC
Authorization Code
Change U

@@FLMACD Authorization Code U

@@FLMACK Access Key U

@@FLMALT
Alternate Project
Definition P P I P P I P U

@@FLMASG
Assignment
Statements U

@@FLMATP
Accounting Record
Type U

@@FLMBDT Predecessor Date U

@@FLMBIO
Build Map
Information P

@@FLMBLL Blank Lines U

@@FLMBMD Build Mode E

@@FLMBTM Predecessor Time U

@@FLMCDT Change Date P P P U

@@FLMCLV Change Group U

@@FLMCML Comment Lines U

@@FLMCMS
Comment
Statements U

374 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 36. SCLM Variables and Their SCLM Functions (continued)

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMCNS Control Statements U

@@FLMCRF CREF Type

@@FLMCTM Change Time P P P U

@@FLMCUN Top CU Name P

@@FLMCUS Change User ID U

@@FLMDBQ Database Qualifier P I I U

@@FLMDDN
DDNAME
Substitution List P

@@FLMDDO Sysprint DDNAME P I P I P

@@FLMDO0
Data Set Name for
OUT0 P E

@@FLMDO1
Data Set Name for
OUT1 P E

@@FLMDO2
Data Set Name for
OUT2 P E

@@FLMDO3
Data Set Name for
OUT3 P E

@@FLMDO4
Data Set Name for
OUT4 P E

@@FLMDO5
Data Set Name for
OUT5 P E

@@FLMDO6
Data Set Name for
OUT6 P E

@@FLMDO7
Data Set Name for
OUT7 P E

@@FLMDO8
Data Set Name for
OUT8 P E

@@FLMDO9
Data Set Name for
OUT9 P E

@@FLMDSD
Destination Group
Data Set Name P P P

@@FLMDSF
Group Found Data
Set Name P P P

@@FLMDSN
Accounting Group
Data Set Name P P P P P U

@@FLMDST
Target Group Data
Set Name P P P

@@FLMECR
Extended CREF
Type

@@FLMETP
Extended Type of
Source Member

@@FLMFDT
Function Invocation
Date P P P P

@@FLMFNM
Calling Function
Name P I P I P

Appendix. SCLM Variables and MetaVariables 375

Table 36. SCLM Variables and Their SCLM Functions (continued)

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMFTM
Function Invocation
Time P P P P

@@FLMGRB Build Group P

@@FLMGRD Destination Group P P P

@@FLMGRF Group Found P P P

@@FLMGRP Accounting Group P P I E P P I E P U

@@FLMICD
Intermediate
Change Date U

@@FLMICG
Intermediate
Change Group U

@@FLMICN
Intermediate
Compilation Name U

@@FLMICP
Intermediate
Compilation Type U

@@FLMICT
Intermediate
Change Time U

@@FLMICU
Intermediate
Change User ID U

@@FLMIDQ
Intermediate DB
Qualifier U

@@FLMIDT Creation Date U

@@FLMIGP Intermediate Group U

@@FLMILG
Intermediate
Language U

@@FLMILV
Intermediate
Language Version U

@@FLMIMB
Intermediate
Member U

@@FLMIMD
Intermediate Map
Date U

@@FLMIMN
Intermediate Map
Name U

@@FLMIMP
Intermediate Map
Type U

@@FLMIMT
Intermediate Map
Time U

@@FLMINC
Dynamic Includes
Pointer P

@@FLMINF
SCLM Internal Data
Pointer P E P I E P I E P E

@@FLMIRD
Intermediate
Creation Date U

@@FLMIRT
Intermediate
Creation Time U

376 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

||||||||

Table 36. SCLM Variables and Their SCLM Functions (continued)

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMISV
Intermediate
Member Version U

@@FLMITM Creation Time U

@@FLMITP Intermediate Type U

@@FLMITV
Intermediate
Translation Version U

@@FLMIVS
Intermediate SCLM
Version U

@@FLMLAN Language P P P U

@@FLMLIS
Dependencies
Pointer P E E P E E

@@FLMLST CU List I I

@@FLMLVS Language Version U

@@FLMMBR
Accounting
Member P P P P P U

@@FLMMDT Build Map Date P P P U

@@FLMMNM Build Map Name U

@@FLMMSC Build Map Type U

@@FLMMTM Build Map Time P P P U

@@FLMMVR Member Version U

@@FLMNCC
Number of Change
Codes U

@@FLMNCL
Number of
Noncomment Lines U

@@FLMNCS

Number of
Noncomment
Statements U

@@FLMNCU
Number of
Compilation Units P I P I P U

@@FLMNIN
Number of
Includes U

@@FLMNUE
Number of User
Entries U

@@FLMNXD

Cross Reference CU
Number of
Downward
Dependencies U

@@FLMNXU

Cross Reference CU
Number of Upward
Dependencies U

@@FLMONM
Output Member
Name

@@FLMOU0
OUT0 Member
Name P

Appendix. SCLM Variables and MetaVariables 377

Table 36. SCLM Variables and Their SCLM Functions (continued)

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMOU1
OUT1 Member
Name P

@@FLMOU2
OUT2 Member
Name P

@@FLMOU3
OUT3 Member
Name P

@@FLMOU4
OUT4 Member
Name P

@@FLMOU5
OUT5 Member
Name P

@@FLMOU6
OUT6 Member
Name P

@@FLMOU7
OUT7 Member
Name P

@@FLMOU8
OUT8 Member
Name P

@@FLMOU9
OUT9 Member
Name P

@@FLMPDT Promote Date U

@@FLMPRJ Project P P I P P I P U

@@FLMPRL Prolog Lines U

@@FLMPTM Promote Time U

@@FLMPUS Promote User ID U

@@FLMSIZ Buffer Size in Bytes P E E P E E

@@FLMSRF Default Type P

@@FLMSTA Accounting Status U

@@FLMSTP Static Pointer P

@@FLMTLL Total Lines U

@@FLMTLS Total Statements U

@@FLMTOG Target Group P I E P E P

@@FLMTVS Translator Version U

@@FLMTYP Accounting Type P P P P P U

@@FLMUID System User ID P P P P

@@FLMVER SCLM Version U

@@FLMXAC
Cross Reference
Authorization Code U

@@FLMXCD
Cross Reference
Change Date U

@@FLMXCN
Cross Reference CU
Name U

@@FLMXCP
Cross Reference CU
Type U

378 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 36. SCLM Variables and Their SCLM Functions (continued)

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMXCT
Cross Reference
Change Time U

@@FLMXDQ
Cross Reference DB
Qualifier U

@@FLMXGF
Cross Reference
Generic Flag U

@@FLMXGP
Cross Reference
Group U

@@FLMXMB
Cross Reference
Member U

@@FLMXTP
Cross Reference
Type U

@@FLMXVS
Cross Reference
SCLM Version U

@@FLM$CC Change Code U

@@FLM$CD Change Code Date U

@@FLM$CT Change Code Time U

@@FLM$IN Include U

@@FLM$IS
Include-Sets for
Includes U

@@FLM$MP Build Map U

@@FLM$UD User Data Entry U

@@FLM$XD

Cross Reference CU
Downward
Dependency U

@@FLM$XN
Compilation Unit
Name U

@@FLM$XT
Compilation Unit
Type U

@@FLM$XU

Cross Reference CU
Upward
Dependency U

SCLM Metavariable Descriptions, Metavariable Names, and
Their SCLM Functions

Table 37 lists the SCLM metavariables in alphabetic order by description.
Metavariables are only used with the DBUTIL service.

Table 37. SCLM Metavariable Descriptions, Names, and Their SCLM Functions

SCLM Short
Description Metavariable Build Copy Parse Purge Verify Utils

Account Report
Fixed

@@FLM#AF U

Account Report
Long

@@FLM#AL U

Appendix. SCLM Variables and MetaVariables 379

Table 37. SCLM Metavariable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Metavariable Build Copy Parse Purge Verify Utils

Cross Reference
Report Fixed

@@FLM#XF U

Cross Reference
Report Long

@@FLM#XL U

Intermediate
Reference Report
Fixed

@@FLM#IF U

Intermediate
Reference Report
Long

@@FLM#IL U

SCLM Metavariable Contents

Table 38 on page 381 lists the SCLM metavariables and their corresponding SCLM
variables. A metavariable represents a list of predefined SCLM variables. Specifying
a metavariable is equivalent to specifying its corresponding list of SCLM variables
in the order listed in Table 38 on page 381.

380 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 38. SCLM Metavariables and Their Corresponding Variables

Metavariable Variable

@@FLM#AF @@FLMPRJ
@@FLMALT
@@FLMGRP
@@FLMTYP
@@FLMMBR
@@FLMVER
@@FLMSTA
@@FLMCDT
@@FLMCTM
@@FLMCLV
@@FLMCUS
@@FLMMVR
@@FLMLAN
@@FLMATP
@@FLMLVS
@@FLMACD
@@FLMACC
@@FLMACK
@@FLMIDT
@@FLMITM
@@FLMMDT
@@FLMMTM
@@FLMBDT
@@FLMBTM
@@FLMPDT
@@FLMPTM
@@FLMPUS
@@FLMDBQ
@@FLMTVS
@@FLMMNM
@@FLMMSC
@@FLMTLL
@@FLMCML
@@FLMNCL
@@FLMBLL
@@FLMPRL
@@FLMTLS
@@FLMCMS
@@FLMCNS
@@FLMASG
@@FLMNCS
@@FLMNUE
@@FLMNIN
@@FLMNCC
@@FLMNCU
@@FLM$IN
@@FLM$IS
@@FLM$CC
@@FLM$CD
@@FLM$CT

@@FLM#AL @@FLM$XT
@@FLM$XN
@@FLM$UD

Appendix. SCLM Variables and MetaVariables 381

Table 38. SCLM Metavariables and Their Corresponding Variables (continued)

Metavariable Variable

@@FLM#IF @@FLMIDQ
@@FLMIGP
@@FLMITP
@@FLMIMB
@@FLMILG
@@FLMIVS
@@FLMICD
@@FLMICT
@@FLMICG
@@FLMICU
@@FLMISV
@@FLMIRD
@@FLMIRT
@@FLMITV
@@FLMIMN
@@FLMIMP
@@FLMIMD
@@FLMIMT
@@FLMILV

@@FLM#IL @@FLMICP
@@FLMICN

@@FLM#XF @@FLMXDQ
@@FLMXGP
@@FLMXTP
@@FLMXMB
@@FLMXVS
@@FLMXCD
@@FLMXCT
@@FLMXAC
@@FLMXGF
@@FLMNXU
@@FLMNXD

@@FLM#XL @@FLMXCP
@@FLMXCN
@@FLM$XU
@@FLM$XD

Description of Group Variables

This section further explains the use of group variables. Table 39 on page 383 lists
each group variable and associated group data set name variable. This shows the
relationship between SCLM groups and the data sets defined in the project
definition for each group.

Table 40 on page 383 is an example that lists the values of each group variable
during the phases of a promote. After Table 39 on page 383 is an overall description
of the four group variables and why each is needed. Each group variable has a
corresponding data set name variable due to the flexible data set name capability.

382 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Table 39. SCLM Group Variable List

Group Variable
Group Data Set
Name Variable Description

@@FLMGRP @@FLMDSN Accounting Group and Accounting Group
Data Set Name

@@FLMGRF @@FLMDSF Group Found and Group Found Data Set
Name

@@FLMTOG @@FLMDST Target Group and Target Group Data Set
Name

@@FLMGRD @@FLMDSD Destination Group and Destination Group
Data Set Name

The following hierarchy will be used in the description:

Given the preceding hierarchy, the following table describes what each group
variable would contain during which translator phase of a PROMOTE from TEST to
REL.

Table 40. SCLM Group Variable Description

Translator
Accounting
Group

Group
Found Target Group

Destination
Group

Verify TEST TEST REL REL

Copy TEST TEST REL REL

Purge key DEV TEST DEV REL

Purge non-key TEST TEST TEST REL

The purge translator is invoked twice during this promote due to the promotion
from a non-key group to a key group.

┌───────┐
│ │
│ REL │ Key
│ │
└───┬───┘

│
│

┌───┴───┐
│ │
│ TEST │ Non-key
│ │
└───┬───┘

│
│

┌───┴───┐
│ │
│ DEV │ Key
│ │
└───────┘

Figure 153. Hierarchy Example for Group Description

Appendix. SCLM Variables and MetaVariables 383

384 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Glossary of SCLM Terms

A
access key. An identifier used to restrict access to a
member.

accounting information. Accounting information is
stored in the SCLM VSAM accounting data sets and
consists of accounting and build map records.

accounting record. An SCLM control data record
containing statistical, historical, and dependency
information for a member under SCLM control.

action bar. The area at the top of an ISPF panel that
contains choices that give you access to actions
available on that panel. When you select an action bar
choice, ISPF displays an action bar pull-down menu.

alternate project definition. A project definition that
provides a version of the project environment which
differs from the default project definition.

application. Software that performs a function for an
end user.

API. Application Programming Interface

APT. Application Programming and Test

architecture. The organization of software components
to form integrated applications.

architecture definition. A means of organizing
components of an application into conceptual units. It
is SCLM’s method of defining an application’s
configuration. It describes how the components of an
application fit together and is used to drive both the
build and promote functions. Architecture definitions
are used to group components into applications,
sub-applications, and load modules.

architecture member. Defines an individual software
component, which may be a collection of other
architecture members, by specifying its relationship to
other software components of an application.

audit information. Information associated with a
member which describes when a member was
modified, how it was modified, and who modified it.
This information is stored in the SCLM VSAM audit
data sets.

audit trail. See audit information.

authorization code. An identifier used by SCLM to
control authority to update and promote members
within a hierarchy. These codes can be used to allow

concurrent development without the risk of module
collisions (overlayed changes).

authorization group. An identifier associated with a
set of authorization codes.

B
build. The process of transforming inputs into outputs
through the invocation of translators specified in the
language definition. Compilers, preprocessors, and
linkage editors are examples of translators that might
be invoked at build time.

build map. Internal data record containing a complete
analysis of the database at the time of the build; it
includes the names of all referenced members and the
last change date and version number of each member.

C
change code. An eight-character identifier used to
indicate the reason for an update or modification to a
member controlled by SCLM.

code. Program(s) written in a language that is subject
to a given translation process.

compilable member. A member recognized by the
compiler or translator as an independent unit or a
controlling unit for the language.

component. See software component.

concurrent updates. Concurrent updates occur when
two programmers update the same member at the
same time. This is supported through the use of
authorization codes and the Edit Compare tool or
alternate project definitions.

configuration management. See software configuration
management.

configuration management plan. See software
configuration management plan

control data. Information that SCLM stores about each
member under its control. The control data is stored in
the accounting and audit VSAM data sets defined for a
project.

copylib. A library containing include referenced
source code.

cross-reference record. Internal data record containing
Ada compilation unit/member relationship
information.

© Copyright IBM Corp. 1990, 1999 385

D
data base. SCLM-controlled VSAM data sets for a
project.

database administrator. See project administrator.

ddname substitution list. A string of ddnames
allocated for the translator. The ddname substitution
list is usually documented in the Programmer’s Guide
for compilers and linkage editors.

default architecture definition. Architecture definition
that is generated by SCLM when one is not specified as
input to a build. This is done when a source member is
built directly.

default project definition. The main project definition
used by an SCLM project.

dependency. Dependency describes a relationship
between a source member and the members it includes.
A source member has a dependency on a member
which it includes.

dependency information. Information on
dependencies is stored in the SCLM accounting record.

development group. All groups in the lowest level of
the hierarchy are known as ″development groups″.
These groups represent end-nodes with no other lower
groups promoting into them.

development layer. Layer of an SCLM hierarchy
consisting of development groups.

development life cycle. The process followed to create
an application. The process starts at the program
requirements gathering phase, moves to the design
phase, the development phase, and continues to the
release of the final product.

downward dependency. A dependency indicating a
compilation unit which must be compiled after the
current compilation unit is compiled.

draw down. During edit, SCLM copys the member
from its first occurrence in a key group in the library
concatenation into a development group and locks it.

dynamic include. An include for a source member
that cannot be resolved until after the translator
invocation.

dynamic reference. A reference that involves a
variable.

E
editable/non-editable. Source members (created by an
edit session) are editable; members produced by a
processor during a build are non-editable.

ellipsis. Three dots that follow a pull-down choice.
When you select a choice that contains an ellipsis, ISPF
displays a pop-up window.

F
function key. In previous releases of ISPF, a
programmed function (PF) key. This is a change in
terminology only.

G
group. A set of project data sets with the same
middle-level qualifier in the SCLM logical naming
convention.

H
hierarchical view. A path of groups (concatenation)
through the hierarchy. The path may start at any group
in the hierarchy and follows the promote path to the
topmost group in the hierarchy.

hierarchy. The organization of groups in a ranked
order, where each group is subordinate to the one
above it.

I
include. A member that is required to complete a
compile of the member that references it.

include-set. An include-set is used to associate an
included member name with the type or types in the
project which are searched to find a member with that
name.

integrate. To merge two or more software components
of an application into a single software application.

K
key group. Data is copied into this group and then
purged from the previous group, effectively ″moving″
the data. Non-key groups are used when a simple copy
is desired.

L
language definition. Specifies the set of translators to
be executed for SCLM functions PARSE, VERIFY,
BUILD, COPY, and PURGE. A language definition is
composed of one FLMLANGL macro followed by an
FLMTRNSL macro for each translator to be executed
for members of SCLM libraries whose language
attribute matches the value of the LANG keyword in
the FLMLANGL macro.

386 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

layer. A given tier of the hierarchy, made up of groups
of equivalent rank.

level. See layer.

library (MVS). A partitioned data set.

lock. When a user locks a member, only that user can
change it. All other users are unable to change that
member until the member is promoted or unlocked.
When you lock a member, you specify an authorization
code. If two users need to change a part, they can use
different authorization codes.

lock service. Restricts (locks) a member to a
development group.

M
maximum promotable group. The topmost group to
which a member can be promoted.

member. The discrete element of an SCLM database,
representing a single data type of a software
component.

metavariable. A variable that includes many other
SCLM variables.

migrate. Registering software components in SCLM:
this includes identifying the component language, and
possibly the change code and authorization code.

migration. The process of introducing members into
SCLM control. Migration locks the member, parses it
according to the requested language, and stores the
information in the accounting data base. You can user
the migration utility to enter a large number of
members into a project’s data base, such as during
conversion to SCLM.

Modal pop-up window. A type of window that
requires you to interact with the panel in the pop-up
before continuing. This includes cancelling the window
or supplying information requested.

Modeless pop-up window. A type of window that
allows you to interact with the dialog that produced
the pop-up before interacting with the pop-up itself.

N
nested dependencies. Nested dependencies occur
when a source member includes another member,
which in turn includes another member. SCLM tracks
nested dependencies, so that when a member changes,
any member that includes it is rebuilt, no matter how
many levels of nesting there are.

non-key group. A group that data is copied into (as
opposed to moved into) during promotion.

P
parser. A program that reads an editable member to
determine dependency and statistical information about
the member. This information is stored in the SCLM
accounting data base.

predecessor date/time. The last modified date/time
stamp taken from the previous version of the current
member.

point-and-shoot text. Text on a screen that is cursor
sensitive.

pop-up window. A bordered temporary window that
displays over another panel.

predecessor verification. The process of verifying that
the previous version of a member has not changed.

predecessors. Previous versions of a member existing
at a higher level within the same hierarchical view.

primary commands. Editing commands that are
entered on the Command line.

primary group. A key or non-key group with two or
more groups promoting into it that must be allocated
when a hierarchy is to be accessed.

private library. A partitioned data set or partitioned
data set extended belonging to a group in the
development layer of the hierarchy.

project. A collection of libraries representing an
integrated SCLM data base, under a single high-level
qualifier.

project administrator. The person who maintains an
SCLM project.

project definition. Defines the SCLM library structure,
project control information, and language definitions. A
project definition is a load module used by SCLM at
run time. The source code for a project definition is
composed of macros.

project definition data. Project definitions and
language definitions which are used to create and
control an SCLM project.

project environment. Information which makes up an
SCLM project. There are three types of information:

v Project Definition Data

v User Applications Data

v Control Data

project identifier. The name assigned to the project
definition.

Project Partitioned Data Sets. MVS Partitioned Data
Sets where user application data is stored.

Glossary of SCLM Terms 387

promote. The process of moving an application or its
components from one level in the project hierarchy to
the next. Promotion out of a development group
removes the lock on editable members that were
successfully promoted.

promote path. The link between two groups along
which data moves from one subordinate group to the
next group in the hierarchy.

pull-down menu. A list of numbered choices
extending from the selection you made on the action
bar. The action bar selection will be highlighted. You
can select an action either by typing in its number and
pressing Enter or by selecting the action with your
cursor. ISPF displays the requested panel. If your
choice contains an ellipsis (...), ISPF displays a pop-up
window. When you exit this panel or pop-up, ISPF
closes the pull-down and returns you to the panel from
which you made the initial action bar selection.

push button. A rectangle with text inside. Push
buttons are used in windows for actions that occur
immediately when the push button is selected
(available only when you are running in GUI mode).

S
SCLM_id. Identifier used to communicate information
between the SCLM services. There is a unique
SCLM_id generated for each invocation of the INIT
service.

scope. The set of members (including architecture
definitions) which will be processed (verified, copied,
compiled, purged, etc.) by build or promote.

service. An SCLM function available via a command
or programming interface.

service parameter list. The options supplied when
invoking an SCLM service.

software component. Any input or output member
associated with an application, which together make up
all or a member of the application.

software configuration management. The method of
controlling and integrating software components to
produce high quality applications. Provides a common
point of integration for all planning and
implementation activities for a project.

software configuration management plan. A
formalized procedure for software configuration
management.

subapplications. Separate parts of an application
being developed within a project. Once the project is
completed, the parts are integrated to form the final
product.

syslib. A library containing source code not under
SCLM control. No dependency information is
maintained for members in a syslib.

T
text. Data present in its natural language form (not
translatable).

traceability. Capability to access and maintain records
of information about a software component, including
when the component was last changed and why.

translator. A load module, CLIST, or REXX program
that receives control from SCLM for execution. The
name of the translator is specified as the value of the
COMPILE keyword for the FLMTRNSL macro.
Examples of translators are compilers, assemblers,
linkage editors, text processors, DB2 preprocessors,
CICS preprocessors, utilities, and customer tools.

type. The third qualifier of the SCLM naming
convention for project partitioned data sets. Typically
identifies the kind of data maintained for a project
hierarchy. Examples of types are SOURCE, OBJECT and
LOAD.

U
unlock. To make a member (formerly locked out)
available for updating (usually associated with
promote).

unlock service. Removes the restriction (unlocks) on a
member to a development group.

upward dependency. A dependency indicating a
compilation unit that must be compiled before the
current compilation unit is compiled.

V
Version. A copy of a member as it existed at a
previous point in time.

Versioning. A function that enables you to retrieve a
version of a member. Useful for ″backing out″ changes.

388 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Index

Special Characters
@@FLM#AF 379
@@FLM#AL 379
@@FLM$CC 369, 379
@@FLM$CD 369, 379
@@FLM$CT 369, 379
@@FLM#IF 380
@@FLM#IL 380
@@FLM$IN 372, 379
@@FLM$IS 372, 379
@@FLM$MP 369, 379
@@FLM$UD 374, 379
@@FLM$XD 370, 379
@@FLM#XF 380
@@FLM#XL 380
@@FLM$XN 370, 379
@@FLM$XT 370, 379
@@FLM$XU 370, 379
@@FLMACC 369, 374
@@FLMACD 369, 374
@@FLMACK 369, 374
@@FLMALT 369, 374
@@FLMASG 369, 374
@@FLMATP 369, 374
@@FLMBDT 373, 374
@@FLMBIO 369, 374
@@FLMBLL 369, 374
@@FLMBMD 369, 374
@@FLMBTM 373, 374
@@FLMCDT 369, 374
@@FLMCLV 369, 374
@@FLMCML 370, 374
@@FLMCMS 370, 374
@@FLMCNS 370, 375
@@FLMCRF 370, 375
@@FLMCTM 369, 375
@@FLMCUN 374, 375
@@FLMCUS 370, 375
@@FLMDBQ 371, 375
@@FLMDDN 371, 375
@@FLMDDO 374, 375
@@FLMDO0 371, 375
@@FLMDO1 371, 375
@@FLMDO2 371, 375
@@FLMDO3 371, 375
@@FLMDO4 371, 375
@@FLMDO5 371, 375
@@FLMDO6 371, 375
@@FLMDO7 371, 375
@@FLMDO8 371, 375
@@FLMDO9 371, 375
@@FLMDSD 371, 375
@@FLMDSF 371, 375
@@FLMDSN 369, 375
@@FLMDST 374, 375
@@FLMECR 371, 375
@@FLMETP 371, 375
@@FLMFDT 371, 375
@@FLMFNM 369, 375
@@FLMFTM 371, 376
@@FLMGRB 369, 376

@@FLMGRD 371, 376
@@FLMGRF 371, 376
@@FLMGRP 369, 376
@@FLMGRP variable 31
@@FLMICD 372, 376
@@FLMICG 372, 376
@@FLMICN 372, 376
@@FLMICP 372, 376
@@FLMICT 372, 376
@@FLMICU 372, 376
@@FLMIDQ 372, 376
@@FLMIDT 370, 376
@@FLMIGP 372, 376
@@FLMILG 372, 376
@@FLMILV 372, 376
@@FLMIMB 372, 376
@@FLMIMD 372, 376
@@FLMIMN 372, 376
@@FLMIMP 372, 376
@@FLMIMT 372, 376
@@FLMINC 92, 371, 376
@@FLMINF 374, 376
@@FLMIRD 372, 376
@@FLMIRT 372, 376
@@FLMISV 372, 377
@@FLMITM 370, 377
@@FLMITP 372, 377
@@FLMITV 372, 377
@@FLMIVS 372, 377
@@FLMLAN 372, 377
@@FLMLIS 371, 377
@@FLMLST 371, 377
@@FLMLVS 372, 377
@@FLMMBR 369, 377
@@FLMMDT 369, 377
@@FLMMNM 369, 377
@@FLMMSC 369, 377
@@FLMMTM 369, 377
@@FLMMVR 373, 377
@@FLMNCC 373, 377
@@FLMNCL 373, 377
@@FLMNCS 373, 377
@@FLMNCU 373, 377
@@FLMNIN 373, 377
@@FLMNUE 373, 377
@@FLMNXD 370, 377
@@FLMNXU 370, 377
@@FLMONM 373, 377
@@FLMOU0 373, 377
@@FLMOU1 373, 378
@@FLMOU2 373, 378
@@FLMOU3 373, 378
@@FLMOU4 373, 378
@@FLMOU5 373, 378
@@FLMOU6 373, 378
@@FLMOU7 373, 378
@@FLMOU8 373, 378
@@FLMOU9 373, 378
@@FLMPDT 373, 378
@@FLMPRJ 373, 378
@@FLMPRL 373, 378

@@FLMPTM 373, 378
@@FLMPUS 373, 378
@@FLMSIZ 369, 378
@@FLMSRF 371, 378
@@FLMSTA 369, 378
@@FLMSTP 374, 378
@@FLMTLL 374, 378
@@FLMTLS 374, 378
@@FLMTOG 374, 378
@@FLMTVS 374, 378
@@FLMTYP 369, 378
@@FLMUID 374, 378
@@FLMVER 374, 378
@@FLMXAC 370, 378
@@FLMXCD 370, 378
@@FLMXCN 370, 378
@@FLMXCP 370, 378
@@FLMXCT 370, 379
@@FLMXDQ 370, 379
@@FLMXGF 370, 379
@@FLMXGP 370, 379
@@FLMXMB 370, 379
@@FLMXTP 371, 379
@@FLMXVS 370, 379

Numerics
1’.CSP/370AD 4.1 Proxy data type 288

CSP/370AD Proxy data type 288
database structure 291
language definitions, modifying 302
MSL control file 296
naming conventions 287
PROJDEFS data sets 296
project administrator steps 291
project data sets, allocating 299
project definition, modifying 300
SCLM-supported data types 293

A
access key

definition of 163
variable 374

accounting data set
creating 20
space computation 22
specifying 30
synchronizing 62

accounting group
variable 376

accounting information
change codes 165
field descriptions 162, 183
include reference 167
selection criteria 183

accounting member
definition of 169

accounting member variable 369, 377
Accounting Record

Change Code List panel 165, 166

© Copyright IBM Corp. 1990, 1999 389

Accounting Record (continued)
Compilation Units panel 168
Include List panel 167
panel 162
Statistics Panel 164
User Data Entries panel 170

accounting record type
definition of 184

accounting record type variable 369, 374
accounting records

deleting 156
field descriptions 162
historical information 162
metavariables 379
panel 161
statistical information 164
variables 368

accounting statistics report 190
accounting status

definition of 162
accounting status variable 369, 378
accounting type

definition of 169
accounting type variable 369, 378
ACCT control option 30
ACCT2 control option 30
action bar 144

Migration Utility - Entry panel
choices 179

View - Entry panel choices 145
action reason values 210
Ada

cross-reference records 169
intermediate records 177
sublibrary definition

intermediate record 175, 177
member selection list 175

ALIAS keyword, format 258
allocating

number of data sets 15
project data sets 13
SCLM data sets 15, 19

allocating SCLM data sets, Output
Disposition 233

alternate project definition
creating 65
defining 27

alternate project definition, selecting 144
application

controlling 253
defining 253
sample 264

architecture
scope 185

architecture definition
compilation control 250, 266
converting JCL decks 106
copy 266
creating 66, 256
fields 184
for CSP map group 316
generic 254, 266
high-level 253
kinds of 249
language 256
link edit control 251, 264
overview 249

architecture definition (continued)
sample 264
statement

format 256
optional LIST 251
optional LMAP 252
uses 257

synchronization with 266
understanding 236
use of 249, 250
valid keywords 257

architecture member 249
architecture report

architecture information 191
cross-reference information 191
panel 192
utility 191

architecture type 8
assemble project definition 49
assignment statement

in accounting records 165
assignment statement variable 369, 374
audit and version record for a

member 212
audit and version selection 209
audit and version utility 207
audit control data sets

allocation of 23
protecting 26
specifying 31

audit control data sets, specifying 20
audit information, storing in a VSAM

data set 208
Audit/Version Utility panel 208
authority, UPDATE 174
authorization code

definition of 9
for concurrent development and

maintenance 12
for controlling

member updates 9
SCLM promotions 9
test versions of members 9

update panel 173
variable 369, 374

authorization code change
definition of 163

authorization code change variable 369,
374

authorization code usage 9
authorization group, defining 29
automatic ordering

compile 251

B
backup of project environment 62
batch processing 232
blank lines variable 369, 374
browse mode 148
buffer size

variable 369, 378
Build

by change code 254
Build, using 242
build and promote user exit routine,

specifying 36

build function
architecture member 226
build 221
build map

accounting records 163
contents 172
date verification 226
deleting 158
record 171

build map variables 369, 377
function summary 217
generating a report 220
modes 220
panel 218
report 221
scopes 219

Build Map
Contents panel 172
Record panel 171

build map information variable 369
build map variable 369, 379
build/promote user exit routine

data set 39
example 39
parameters 37
requirements 37
specification 36

build support
workstation support 349

C
calling function name variable 369, 375
CC architecture definitions, writing 105
CCODE

in architecture statements 258
change code

accounting records 166
deleting 166
input 154
list of 166
report 189
variables 369, 379

Change Code List panel 165, 166
change code verification routine

creating 32
example 35
parameters 33
requirements 33
specifying 32

change request 34
cleanup, project 247
cleanup report 191
CLIST

EZECSPGN 303
CMD statement

format 258
restriction 258
use of 252

code
copying 70
parsing 70
translating 70

code, authorization
definition of 9
for concurrent development and

maintenance 12

390 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

code, authorization (continued)
for controlling

member updates 9
SCLM promotions 9
test versions of members 9

update panel 173
variable 369, 374

code, change
accounting records 166
deleting 166
input 154
list of 166
report 189
variables 369, 379

command
DEFINE 155
EXECUTE 180
line 144
primary 144
SETSSI 252
SUBMIT 180

command macros
Save 151
SCREATE 152
SMOVE 153
SPROF 153
SREPLACE 154

command shell, SCLM 231
comment lines

definition of 164
comment lines variable 370, 374
comment statements

definition of 165
comment statements variable 370, 374
COMP statement

format 259
use of 251

compilation control architecture member
for JOVIAL programs 251
requirement 250
use of 250

compilation unit
cross-reference record 168
definition of 168
deleting records and forms for 175
forced save 152
intermediate record 175, 177
list of 167
variables 370, 379

Compilation Units panel 168
compile errors 67
compiler

options override 32, 251
used by SCLM 43

compool reference
definition of 251
identify database targets for 251

concurrent development and
maintenance 11

conditional mode
build 220
promote 226

conditionally saved components 85
configuring the input list translators 93
control data sets

allocating 20
protecting 26

control data sets (continued)
specifying to project definition 29

control options
ACCT 30
ACCT2 30
change code verification routine

specification 32
DASDUNIT 32
DSNAME 31
EXPACCT 30
MAXLINE 31
MAXVIO 32
OPTOVER 32
user exits 36
VERPDS 31
VERS 31
VERS2 31
VIOUNIT 32

control statements
in accounting records 165
validation 257

control statements variable 370, 375
controlling member

test versions 9
updates 9

conversion to SCLM
architecture definitions 66
initialization of non-key groups 65
introduction of fixes 67
prerequisites 65
project definitions 65
registration of members 66

converting JCL decks 106
converting JCL to SCLM language

definitions 112
copy

architecture member 266
COPY statement

format 259
use of 259

creating object modules 250
CREF statement

format 259
use of 227, 251

cross project support 61
cross-project support 61
cross-reference

panel 169
records 168
report 191

cross reference variables 369, 370, 374
CSP/370AD 4.1 support

architecture definition examples
binding the application 279, 322
DB2 CLIST inclusion 322
HL architecture 321, 322, 323, 326
linking the application 322, 324,

325
multitarget architecture 330
system architecture 320

architecture definition overview 316
CSP/370AD Proxy member

examples 312
overview 277, 309
syntax 310

DB2 CLIST data type 337

CSP/370AD 4.1 support (continued)
DB2 CLIST member, creating

example 343
format 341
overview 314

DBRM data type 279, 343
EZEWORK data set 281
relationship with SCLM 277
restrictions and

recommendations 281, 283
CSP/370AD users, multiple user

methodology 282, 283
CSP/AD 3.3 support

DB2 CLIST member, creating
example 343

relationship with SCLM 277, 337
CSP/AD 4.1 support

DB2 CLIST member, creating
format 341

relationship with SCLM 277
CU list variable 371, 377

D
DASDUNIT control option 32
data contention 231
data set

accounting 30
allocation 19
attributes 19
concatenations 233
exit output 39
flexible naming 13
naming convention 13
overflow 231
overlay 233
secondary accounting 30
synchronizing 62

database
accounting records 161
backup 62
cross-reference records 169
historical information 162
intermediate records 175, 177
organization 140
recovery 62
statistical information 164

database contents utility
Additional Selection Criteria

Panel 183
Customization Parameters panel 187
field names 181
report 185
selection criteria

accounting information 183
architecture definition 184
pattern examples 182

tailored data set
definition of 185
example 188
options 187
report 188

using 244
database qualifier

variable 371, 375
date_check parameter 263

CLIST member
overview 314

Index 391

date_check parameter 263 (continued)
CSP/370AD 4.1 support 277

DB2 language definitions
FLM@2ASM 339
FLM@2C 339
FLM@2CO2 339
FLM@2COB 339
FLM@2FRT 339
FLM@2PLO 339
FLM@BD2 339
FLM@BDO 339
FLM@EASM 339
FLM@EC 339
FLM@ECO2 339
FLM@ECOB 339
FLM@EPLO 339

DB2 support
CLIST member, creating

example 343
format 341

CSP/370AD 4.1 support 337
CSP/AD 3.3 support 277, 337
CSP/AD 4.1 support 277
getting started, programmers 341
getting started, project managers 338
recommendations 340
restrictions 338

ddname substitution list
defining new language to SCLM 94
use of 47
variable 371, 375

default project definition 3
default type

use of 264
default type, size 94
default type variable 371, 378
DEFINE command 155
defining

application 253
authorization groups 29
compiler processed components 250
generic architecture members 254
language definition 69
link edit processed components 251
project 3
subapplication 253
translator definition 70

defining a new language
defining a preprocessor 107
determining what information goes

where 94
how to write CC architecture

definitions 105
step-by-step 96

defining an SCLM project,
prerequisites 51

definition, architecture
compilation control 250, 266
converting JCL decks 106
copy 266
creating 66, 256
fields 184
for CSP map group 316
generic 254, 266
high-level 253
kinds of 249
language 256

definition, architecture (continued)
link edit control 251, 264
overview 249
sample 264
statement

format 256
optional LIST 251
optional LMAP 252
uses 257

synchronization with 266
understanding 236
use of 249, 250
valid keywords 257

delete group utility 213
deleting

accounting records 156
build map records 156
change codes 166
compilation unit records and

forms 176
cross-reference records 158
data sets 232
from a key group 158
intermediate records 156, 174
members 156
user data entry records 170

dependencies pointer variable 371, 377
dependency

downward 170
information 168, 178
upward 170

dependency errors 67
dependency processing

include 272
development activity examples 236
development cycle example 238
development scenario 235
dialog interface

Build (option 4) 217
Edit (option 2) 148
main menu 143
Promote (option 5) 224
Utilities (option 3) 155, 181
View (option 1) 145
virtual region size 143

dialog interface, modifying delete
group 63

directory blocks 19
downward dependency 170
drawdown feature 142, 148
drawing down a member 246
dynamic includes

definition of 92
pointer 92
tracking 92
using 92

dynamic includes variable 371, 376

E
edit

change code support 154
commands

Save 151
SCREATE 152
SMOVE 153
SPROF 153
SREPLACE 154

edit (continued)
drawdown feature 148
function 148
panel 148
process 148
records and field names 149

Edit Entry panel 148
Edit Profile Panel 154
editing a member 243
editions, comparing SCLM and ISPF 150
editor, using 240
ensuring synchronization of

hierarchy 266
errors

compile 67
dependency 67
hierarchy 67

establish authorization codes 9
EXECUTE command 180
exit routine

build 36
example 39
output data sets 39
promote 36
specification 36

EXPACCT control option 30
Export

report example 200
EXPORT

accounting data set, specifying 30
accounting data set creation 22
export accounting data set 22
Option 6 198
utility

overview of 198
use of 198

Utility panel 198
exporting

SCLM data sets 198
extended CREF type variable 371
extended scope

architecture 185
build 219
promote 226

EZECSPGN CLIST 303
EZEWORK data restriction 281

F
field name metavariables 379
field name variables 369, 374
flexible data set naming

cross-project support 61
flexible naming 13
FLM@BD2 language definition 339
FLM@BDO output language

definition 339
FLMABEG macro

assembling and linking the project
definition 49

creating project definition 29
FLMAEND macro 29
FLMAGRP macro 29
FLMALLOC macro 361

defining language definitions 46, 47
FLMALTC macro 31
FLMCMPLB macro 46
FLMCOND 47

392 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

FLMCPYLB macro
defining language definitions 46, 47

FLMGROUP macro 29
FLMINCLS macro 361
FLMLANGL macro 361

defining language definitions 46
FLMLTWST 349
FLMSYSLB 46
FLMSYSLB macro 48
FLMTCOND 112
FLMTOPTS 47, 113
FLMTRNSL 87, 92

defining language definitions 47, 48
defining translators 70

FLMTRNSL FUNCTN parameter 70
FLMTRNSL macro 361
FLMTYPE macro 29
FLMXFER translator 350
forced mode, build 220
function invocation variables

build group 376
date 371, 375
time 371, 376

functions
build 217
edit 148
promote 224
utilities 155
view 145

functions, SCLM
Build 15
Delete 15
Delete Group 15
Edit 15
Import 15
Library Management Utility 15
Migrate 15
Parse 15
Promote 15
View 15

G
generic architecture member

restriction 254
use of 254

generic output specifying the generic
architecture member 254

group
defining authorization codes for 29
definition of 139
development layer 140
guidelines for defining 142
key 227

overview 141
promote report 227

non-key 227
overview 141
promote report 227

non-key testing techniques,
primary 6

primary non-key 6
staging layer 142
test 6
variables description 382
verification 149

group found variable 371, 376

H
hierarchical view 140
hierarchy

conversion errors 67
defining 4
description 140
ensuring synchronization 266
group concatenation 140
moving data through 142
promoting data 140
search order 141

high-level architecture member
application modularity 253
controlling dialog software 253
use of 253

I
IDCAMS utility 21
impact assessment techniques 271
IMPORT

Option 7 202
utility

using 202
Utility panel 203

importing
SCLM data 202
SCLM data sets 202

IMS MFS
language definitions 301
notes 301

INCL statement
format 256
use of 252

INCLD statement, use of 252, 256
include 272
Include List panel 167
include reference

definition of 167
panel 166

include reference variable 372, 379
include-sets for includes variable 372
Information/Management with

SCLM 123
initial and save change code exit routine

parameters 35
specification 34

input list translators 93
installing sample project data sets 53
intermediate records

field descriptions 177
panel 177

intermediate records variables 376, 377
intermediate variables 374, 379

J
JCL

converting to SCLM language
definitions 112

JCL job card, sample 232
job statement 232
JOVIAL 251

compilation control architecture
member 251

compool references 251

K
key group 141
key groups 141, 227
keywords

build map 173
in architecture member

statements 257
KREF

in architecture statements 260

L
language

architecture member 256
variable 372, 377

language definitions
CSP/AD 4.1 300
DB2 339
defining 43
general 43
macros 46
modify 43
new 69
SCLM-supplied 43
using multiple translators 70

language definitions using the edit
function 154

layer, staging 140, 142
library concatenations 140
library utility

authorization code update 174
browse accounting record 161
browse statistics 164
build map contents 172
build map record 171
change code list 165
compilation units 167
cross-reference record 168
include list 166
member selection list 159
options 158
panel 156
understanding 241
update authorization code 173
user data entries 170

Library Utility panel 157
limited scope 219
line commands 144
link edit control architecture member

requirement 252
restriction 252
sample 264
use of 251

link project definition 49
LINK statement

format 260
use of 227

linkage editor
creating 252
include 252
multiple 252
override options 252
producing 251
sample 265
specify options 252
SSI field 252

Index 393

linkage editor (continued)
using 251
verification 252

LIST statement
format 261
use of 251

listing data set
temporary

compiler processed
components 251

Link Edit processed
components 252

listings
saving

compiler processed
components 251

Link Edit processed
components 252

LKED statement
format 261
use of 252

LMAP statement
format 261
use of 252

load module 8, 330
LOAD statement

format 261
use of 257, 261

load type 8

M
macro

FLMABEG 29
FLMAEND 29
FLMAGRP 29
FLMALLOC 361

using 47, 49
FLMALTC 30, 31
FLMATVER 30
FLMCMPLB 46
FLMCNTRL 30
FLMCOND 47
FLMCPYLB 47, 49
FLMGROUP 29
FLMINCLS 361
FLMLANGL 48, 361

using 46
FLMSYSLB 46
FLMTCOND 47
FLMTOPTS 47
FLMTRNSL 47, 48, 361
FLMTYPE 29
initial 150
user-defined 155

Main Menu panel 143
action bar choices 144
fields 144

maximum report lines 31
maximum VIO limit 32
MAXLINE control option 31
MAXVIO control option 32
member

architecture 249
definition of 139
deleting 156, 158
dependency information 169, 170
historical information 178

member selection list
accounting records 159
Ada sublibrary management

utility 175
intermediate records 176
library utility 159

memory, insufficient 143
messages

ABEND 231
data set 233
ISPF 253
promote 227

metavariables
cross-reference 380
field names 379
functions 379, 380
list of 379, 380
report 369, 379
uses for 379, 380

migration considerations
SCLM xix

migration utility 178, 179
mixed mode 147, 150
modes

browse 148
build 220
forced save 152
mixed 147, 150
promote 226

modify control options 29
modify language definitions 46
modifying delete group dialog

interface 63
module, object

creating 250
include 252
sample 266
specify options 251

MOVE command 153
MSL control file 296
multiple translator usage 70
MVS limitations 141

N
name

language definition 154
profile 150

naming conventions of architecture
members 257

non-key group 227
definition 141
overview 141
promote report 227

normal scope
build 219
promote 226

number of versions to keep 31

O
OBJ statement

format 261
use of 266

object module
creating 250
include 252

object module (continued)
sample 266
specify options 251

object type 8
options, control

ACCT 30
ACCT2 30
change code verification routine

specification 32
DASDUNIT 32
DSNAME 31
EXPACCT 30
MAXLINE 31
MAXVIO 32
OPTOVER 32
user exits 36
VERPDS 31
VERS 31
VERS2 31
VIOUNIT 32

OPTOVER control option 32
ordering compiler inputs

automatically 251
output

creating generic 254
sending to a data set 233

Output
build outputs 268
default output member names 269
languages of output members 269
multiple build outputs 268
sequential build outputs 268

Output Disposition panel 233
output member name variable 373, 377
OUTx statement 261
overflow, data set 231

P
packed data set

editing 151
panels

accounting record 162
accounting record statistics 164
architecture report 192
authorization code update 174
build 218
build map 171
build map contents 172
change code list 165, 166
compilation units list 168
controlling software for 253
cross-reference record 169
database contents - additional

selection criteria 183
database contents customization

parameters 187
database contents-tailored 186
edit 148
include list 167
intermediate records 177
library utility 157
main menu 143
member selection list

accounting records 159
intermediate records 176

migration utility 179
output disposition 233

394 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

panels (continued)
promote 225
SCLM edit profile 153
sublibrary management 175
user data entries 170
utilities 156
verify batch job information 232

PARM statement
format 262
use of 252

PARMx statement
format 262
use of 251

parser
invoking 74, 75
user-defined 74
writing 75

parser volume 150
partitioned data set, storing version of

SCLM member 208
patterns for selection criteria 182
precedence system 184
primary

commands 144
group 142

primary non-key groups 6
printing data sets 232
problem report 34
processing

batch 232
errors 230

processing conditionally saved
components 85

PROJDEFS data sets
allocation 13
mslctrl data set 296
naming convention 13
protecting 25

project
controls 29
converting to SCLM 65
define new languages for 69
defining 3
environment backup and recovery 62
name 29

project cleanup 247
project definition

alternate 3, 27
assembly of 49
data 4
generation of 3
linkage of 49
primary 3
sample of 56
specification 26

project environment
backup and recovery 62
definition of 3
generation of 3
protecting 25

project environment, definition 139
project manager scenario 50
project partitioned data sets

allocation of 13
naming convention 13, 31
protecting 25

PROM statement
format 263
use of 253

Promote
by change code 254

promote function
data contention 231
data set overflow 231
error messages 226, 227
generating a report 226
modes 226
panel 225
processing 226
report 227
scopes 226

promoting members 243
propagating applications 272
protect SCLM data sets 29
proxy, CSP/370AD 4

CSP/370AD Proxy data type 288
database structure 291
language definitions, modifying 302
MSL control file 296
naming conventions 287
PROJDEFS data sets 296
project administrator steps 291
project data sets, allocating 299
project definition, modifying 300
SCLM-supported data types 293

proxy members 277
purge process 231

R
RACF (Resource Access Control

Facility) 25
READ access 25
rebuilding a changed member 244
records

accounting 161
build map 171
cross-reference 169
intermediate 175, 177
user data entries 171

recovery of database 62
reference, compool

definition of 251
identify database targets for 251

reference, include
include reference 167

report
accounting statistics 190
architecture information 191, 193
build 223
change code 189
cleanup 191
cross-reference information 191
cutoff 193
data set 233
database contents utility 185
examples 185, 193, 223, 230
lines, maximum 31
problem 34
promote 227
source listing 190
tailored 186, 188
variables 188

report only mode
build 220

report only mode (continued)
promote 226

requirements for workstation build
workstation build requirements 349

Resource Access Control Facility
(RACF) 25

S
sample project

installing the project data sets 53
overview 51

sample project utility, SCLM 233
SAVE command 151
SCLM

defining a new language 94
defining a preprocessor 107
hierarchy 140
installing a project database 50
support for DB2 337
support for workstation builds 349

SCLM command shell 231
SCLM editor, using 240
SCLM internal data pointer

variable 374, 376
SCLM introduction 139
SCLM language definitions 43
SCLM metavariables

account report fixed
(@@FLM#AF) 379

account report long
(@@FLM#AL) 379

cross reference report fixed
(@@FLM#XF) 380

cross reference report long
(@@FLM#XL) 380

intermediate reference report fixed
(@@FLM#IF) 380

intermediate reference report long
(@@FLM#IL) 380

SCLM migration considerations xix
SCLM operation with CSP/370AD and

DB2
build process with CSP/370AD

objects (summary) 331
build process without CSP/370AD

objects (summary) 331
processing in language definitions

(overview) 303
SCLM sample project utility 233
SCLM variables

access key (@@FLMACK) 369, 374
accounting group (@@FLMGRP) 369,

376
accounting group data set name

(@@FLMDSN) 369, 375
accounting member

(@@FLMMBR) 369, 377
accounting record type

(@@FLMATP) 369, 374
accounting status (@@FLMSTA) 369,

378
accounting type (@@FLMTYP) 369,

378
alternate project definition

(@@FLMALT) 369, 374
assignment statements

(@@FLMASG) 369, 374

Index 395

SCLM variables (continued)
authorization code

(@@FLMACD) 369, 374
authorization code change

(@@FLMACC) 369, 374
blank lines (@@FLMBLL) 369, 374
buffer size in bytes (@@FLMSIZ) 369,

378
build group (@@FLMGRB) 369, 376
build map (@@FLM$MP) 369, 379
build map date (@@FLMMDT) 369,

377
build map information

(@@FLMBIO) 369, 374
build map name

(@@FLMMNM) 369, 377
build map time (@@FLMMTM) 369,

377
build map type (@@FLMMSC) 369,

377
build mode (@@FLMBMD) 369, 374
calling function name

(@@FLMFNM) 369, 375
change code (@@FLM$CC) 369, 379
change code data (@@FLM$CD) 369
change code date (@@FLM$CD) 379
change code time (@@FLM$CT) 369,

379
change date (@@FLMCDT) 369, 374
change group (@@FLMCLV) 369, 374
change time (@@FLMCTM) 369, 375
change user ID (@@FLMCUS) 370,

375
comment lines (@@FLMCML) 370,

374
comment statements

(@@FLMCMS) 370, 374
compilation unit name

(@@FLM$XN) 370, 379
compilation unit type

(@@FLM$XT) 370, 379
control statements (@@FLMCNS) 370
control statments (@@FLMCNS) 375
creation date (@@FLMIDT) 370, 376
creation time (@@FLMITM) 370, 377
CREF type (@@FLMCRF) 370, 375
cross reference authorization code

(@@FLMXAC) 370, 378
cross reference change date

(@@FLMXCD) 370, 378
cross reference change time

(@@FLM) 379
cross reference change time

(@@FLMXCT) 370
cross reference CU downward

dependency (@@FLM$XD) 370, 379
cross reference CU name

(@@FLMXCN) 370, 378
cross reference CU number of

downward dependencies
(@@FLMNXD) 370, 377

cross reference CU number of upward
dependencies (@@FLMNXU) 370,
377

cross reference CU type
(@@FLMXCP) 370, 378

SCLM variables (continued)
cross reference CU upward

dependency (@@FLM$XU) 370, 379
cross reference DB qualifier

(@@FLMXDQ) 370, 379
cross reference generic flag

(@@FLMXGF) 370, 379
cross reference group

(@@FLMXGP) 370, 379
cross reference member

(@@FLMXMB) 370, 379
cross reference SCLM version

(@@FLMXVS) 370, 379
cross reference type

(@@FLMXTP) 371, 379
CU list (@@FLMLST) 371, 377
data set name for OUT0

(@@FLMDO0) 371, 375
data set name for OUT1

(@@FLMDO1) 371, 375
data set name for OUT2

(@@FLMDO2) 371, 375
data set name for OUT3

(@@FLMDO3) 371, 375
data set name for OUT4

(@@FLMDO4) 371, 375
data set name for OUT5

(@@FLMDO5) 371, 375
data set name for OUT6

(@@FLMDO6) 371, 375
data set name for OUT7

(@@FLMDO7) 371, 375
data set name for OUT8

(@@FLMDO8) 371, 375
data set name for OUT9

(@@FLMDO9) 371, 375
database qualifier (@@FLMDBQ) 371,

375
DDNAME substitution list

(@@FLMDDN) 371, 375
default type (@@FLMSRF) 371, 378
dependencies pointer

(@@FLMLIS) 371, 377
destination group

(@@FLMGRD) 371, 376
destination group data set name

(@@FLMDSD) 371, 375
dynamic includes pointer

(@@FLMINC) 371, 376
extended CREF type

(@@FLMECR) 371, 375
extended type of source member

(@@FLMETP) 371, 375
function invocation date

(@@FLMFDT) 371, 375
function invocation time

(@@FLMFTM) 371, 376
group found (@@FLMGRF) 371, 376
group found data set name

(@@FLMDSF) 371, 375
include (@@FLM$IN) 372, 379
include sets for includes

(@@FLM$IS) 372, 379
intermediate change date

(@@FLMICD) 372, 376
intermediate change group

(@@FLMICG) 372, 376

SCLM variables (continued)
intermediate change time

(@@FLMICT) 372, 376
intermediate change user ID

(@@FLMICU) 372, 376
intermediate compilation name

(@@FLMICN) 372, 376
intermediate compilation type

(@@FLMICP) 372, 376
intermediate creation date

(@@FLMIRD) 372, 376
intermediate creation time

(@@FLMIRT) 372, 376
intermediate DB qualifier

(@@FLMIDQ) 372, 376
intermediate group

(@@FLMIGP) 372, 376
intermediate language

(@@FLMILG) 372, 376
intermediate language version

(@@FLMILV) 372, 376
intermediate map date

(@@FLMIMD) 372, 376
intermediate map name

(@@FLMIMN) 372, 376
intermediate map time

(@@FLMIMT) 372, 376
intermediate map type

(@@FLMIMP) 372, 376
intermediate member

(@@FLMIMB) 372, 376
intermediate member version

(@@FLMISV) 372, 377
intermediate SCLM version

(@@FLMIVS) 372, 377
intermediate translation version

(@@FLMITV) 372, 377
intermediate type (@@FLMITP) 372,

377
language (@@FLM) 377
language (@@FLMLAN) 372
language version (@@FLMLVS) 372,

377
member version (@@FLMMVR) 373,

377
number of change codes

(@@FLMNCC) 373, 377
number of compilation units

(@@FLMNCU) 373, 377
number of includes

(@@FLMNIN) 373, 377
number of noncomment lines

(@@FLMNCL) 373, 377
number of noncomment statements

(@@FLMNCS) 373, 377
number of user entries

(@@FLMNUE) 373, 377
OUT0 member name

(@@FLMOU0) 373, 377
OUT1 member name

(@@FLMOU1) 373, 378
OUT2 member name

(@@FLMOU2) 373, 378
OUT3 member name

(@@FLMOU3) 373, 378
OUT4 member name

(@@FLMOU4) 373, 378

396 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

SCLM variables (continued)
OUT5 member name

(@@FLMOU5) 373, 378
OUT6 member name

(@@FLMOU6) 373, 378
OUT7 member name

(@@FLMOU7) 373, 378
OUT8 member name

(@@FLMOU8) 373, 378
OUT9 member name

(@@FLMOU9) 373, 378
output member name

(@@FLMONM) 373, 377
predecessor date (@@FLMBDT) 373,

374
predecessor time (@@FLMBTM) 373,

374
project (@@FLMPRJ) 373, 378
prolog lines (@@FLMPRL) 373, 378
promote date (@@FLMPDT) 373, 378
promote time (@@FLMPTM) 373, 378
promote user ID (@@FLMPUS) 373,

378
SCLM internal data pointer

(@@FLMINF) 374, 376
SCLM version (@@FLMVER) 374,

378
static pointer (@@FLMSTP) 374, 378
sysprint DDNAME

(@@FLMDDO) 374, 375
system user ID (@@FLMUID) 374,

378
target group (@@FLMTOG) 374, 378
target group data set name

(@@FLMDST) 374, 375
top CU name (@@FLMCUN) 374,

375
total lines (@@FLMTLL) 374, 378
total statements (@@FLMTLS) 374,

378
translator version (@@FLMTVS) 374,

378
user data entry (@@FLM$UD) 374,

379
scopes

architecture 185
build 219
promote 226

SCREATE command 152
secondary accounting data set,

specifying 30
security 25
selection criteria 182
SETSSI command 252
SINC statement

format 263
required 250

skeletons, ISPF 253
SMOVE command 153
source listing report 190
source type 8
space computations, accounting data set

definition 22
SPACE parameter 22
SPROF command 153
SREF statement

format 264

SREPLACE command 154
SSI field 252
staging

group 142
layer 142

static pointer
variable 374, 378

statistical information
field descriptions 164
panel 164

STORE service
statistical information 164

subapplication
controlling 253
defining 253
sample 264

sublibrary management utility
general discussion 174
intermediate record 177
member selection list 176
panel 175

SUBMIT command 180
subunit scope

architecture 185
build 219
promote 226

supported data 8
synchronization, architecture

definition 266
synchronizing data sets 62
sysprint ddname variable 374

T
tailored data set

definition of 185
format specification 188
options 187
report 188
sample of 188

temporary listing data set
LIST - compiler processed

components 251
LMAP - Link Edit processed

components 252
testing with primary non-key group 6
title

on tailored report 187
top CU name

variable 374, 375
tracking dynamic includes 92
translator

invocation 252
type

architecture 8
load 8
object 8
source 8

type, definition of 140

U
unconditional mode

build 220
promote 226

UPARSE mode 152
UPDATE 25

update authorization code 173
upward dependency 170
user application data 139
user data entries

accounting records 164, 170
variable 374, 379

User Data Entries panel 170
user-defined macros 155
user-defined parsers 74
user exit routine specification

build 36
example 39
promote 36

using SCLM and information
manager 123

using the database contents utility 244
USUBDD mode 152
utilities function

Ada sublibrary management
utility 174

architecture report 191
audit and version utility 207
database contents utility 180
delete group utility 213
export utility 198
import utility 202
library utility 156
migration utility 178
panel 156
tailored data set 188
tailored report 186

Utilities panel 156

V
variable 371
variables

description of 367
description of group 382
field names 369
functions 369
list of 368
report 188, 369
uses for 368

VERCOUNT parameter 31
verification

authorization code authorization
codes, 178

bypass 263
error processing 226
load module 252
promote processing 231

verification change code 32
VERPDS control option 31
VERPDS data sets 31
VERS control option 31
VERS2 control option 31
version of SCLM member, storing in a

PDS 208
versioning partitioned data sets 18, 31
View - Entry panel 145
view function

description 145
VIO limit 32
VIOUNIT control option 32
VSAM

accounting data sets 20
audit control data sets 23

Index 397

VSAM (continued)
cluster 19
data set 20

VSAM data set

storing audit information 208

VSAM Record Level Sharing 20, 31

VSAMRLS control option

specifying 31

W
workstation build support

relationship with SCLM 349

X
XREF compilation unit type 176

398 OS/390 V2R8.0 ISPF SCLM Developer’s Guide

Readers’ Comments — We’d Like to Hear from You

Interactive System Productivity Facility (ISPF)
Software Configuration and Library Manager (SCLM) Developer’s and Project Manager’s Guide
OS/390 Version 2 Release 8.0

Publication No. SC34-4750-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC34-4750-00

SC34-4750-00

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department CGMD / Bldg 062
P.O. Box 12195
Research Triangle Park, NC

27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

File Number: S370/4300-39
Program Number: 5645-001

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4750-00

